电信公司将n个人的电话资费单寄给n个人,但信封上各收信人的地址随机填写,用随机变量X表示收到自己电话资费单的人的个数,求E(X)及D(X).
设X1,X2,…,Xn是来自总体F(x;θ)的一个样本,(X1,…,Xn)是θ的一个估计量,若试证:是θ的相合(一致)估计量.
某种食品防腐剂含量X服从N(μ,σ2)分布,从总体中任取20件产品,测得其防腐剂平均含量为=10.2,标准差为s=0.5099,问可否认为该f生产的产品防腐剂含量显著大于10(其中显著性水平为α=0.05)?
设X~f(x)=.
B解答题解答应写出文字说明、证明过程或演算步骤。/B
设随机变量X与Y相互独立,X的概率分布为P{X=i}=(i=-1,0,1),Y的概率密度为fY(y)=记Z=X+Y。(Ⅰ)求(Ⅱ)求Z的概率密度fZ(z)。
设某产品的指标服从正态分布,它的标准差为σ=100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平a=0.05下,能否认为这批产品的指标的期望值μ不低于1600.
利用中心极限定理证明:
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).
若X~χX
1
,X
2
,…,X
n
(n),证明:EX=n,DX=2n.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
设总体X的概率分布为其中是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.
设随机变量X,Y独立同分布,且X~N(0,σ
2
),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,Xi,X(n)=max(X1,…,Xn).
设随机变量X和Y的联合概率分布为试判断X与Y的独立性以及X2与Y2的独立性.
甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放人乙袋,再从乙袋中任取一球,求该球是白球的概率.
设X1,X2,…,Xn和Y1,Y2,…,Yn是分别取自总体都为正态分布N(μ,σ2)的两个相互独立的简单随机样本,记它们的样本方差分别为,则统计量T=(n-1)的方差D(T)=()
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,则 ( )
设X,Y的概率分布为X~,且P(XY=0)=1.(1)求(X,Y)的联合分布;(2)X,Y是否独立?
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5,设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望。
