设随机变量X的概率分布为P{X=k}=a,k=0,1,2,…,则常数a=
n把钥匙中只有一把可以把门打开,现从中任取一把开门,直到打开门为止,下列两种情况分别求开门次数的数学期望和方差:
设Xx,X2,…,X8是来自总体N(2,1)的简单随机样本,则统计量服从()
设随机变量X服从正态分布N(μ,σ
2
),则随σ的增大,概率P{|X-μ|<σ}应该
某种产品的次品率为0.1,检验员每天独立地检验6次,每次有放回地取10件产品进行检验,若发现这10件产品中有次品,就去调整设备(否则不调整),记X为一天中调整设备的次数,试求X的分布列.
设(X,Y)的联合概率密度为f(x,y)=.求:(1)(X,Y)的边缘密度函数;(2)Z=2X—Y的密度函数.
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pq
m-1
,m=1,2,…,0<p<1,q=1一p,Y服从标准正态分布N(0,1).求:
(Ⅰ)U=X+Y的分布函数;
(Ⅱ)V=XY的分布函数.
设随机变量x服从参数为的指数分布,对X独立地重复观察4次,用Y表示观察值大于3的次数,求E(Y2).
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0},P{X>
某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.82),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为=51.26(设生产过程中方差不改变),在显著性水平为α=0.05下,检验生产过程是否正常.
某保险公司统计资料表明,在索赔户中被盗索赔户占20%,用X表示抽取的100个索赔户中被盗索赔户的户数.(1)求X的概率分布;(2)用拉普拉斯定理求被盗户数不少于14户且不多于30户的概率的近似值.
设总体X服从正态分布N(0,σ2),X,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n一1的t分布的随机变量是()
设区域D为:由以(0,0),(1,1),(0,1/2),(1/2,1)为顶点的四边形与以(1/2,0),(1,0),(1,1/2)为顶点的三角形合成.而(X,Y)在D上服从均匀分布,求关于X和Y的边缘密度f
X
(x)和f
Y
(y)。
设A、B为任意两个事件,且AB,P(B)>0,则下列选项必然成立的是()
假设随机变量X在区间[-1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于
设X1,X2,…,X7是总体X~N(0,4)的简单随机样本,求P(Xi2≤64).
设0<P(A)<1,0<P(B)<1,P(A|B)+=1,则事件A和B()
若X~γ
2
(n),证明:EX=n,DX=2n.
已知随机变量X,Y的概率分布分别为并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
