设f(x)在[0,1]上连续,求xnf(x)dx.
设f(x)连续,∫
0
x
tf(x-t)dt=1-cosx,求∫
0
π/2
f(x)dx.
设α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
s
为两个n维向量组,且r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
s
)=r,则( ).
证明:对于曲线积分的估计式为|∫LPdx+Qdy|≤lM,式中l为积分曲线段长度,并证明
下列命题中正确的是①设anχn与bnχn有相同的收敛域(-R,R),则(an+bb)χn的收敛域为(-R,R);②设anχn与bnχn的收敛域分别为[-1,1),(-2,2),则=(an+bn)χn的收敛域为[-1,1);③若幂级数anχn的收敛区间(-R,R)即它的收敛域,则的收敛域可能是[-R,R];④若幂级数anχn的收敛域为[-R,R],则幂级数nanχn-1的收敛域为[-R,R].
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
设A是n阶矩阵,满足AAT=I(I是n阶单位阵,A
T
是A的转置矩阵),|A|<0,求|A+I|.
设对于半空间x>0内任意的光滑有向封闭曲面∑,都有xf(x)dydz-xyf(x)dzdx-e2xzdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)。
设,求a,b.
证明:=4/e.
计算二重积分
将y=sinx展开为的幂级数.
设随机变量X服从参数为1的指数分布,令Y=max{X,1),求
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X).试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ))Y=|(X一1)|的分布函数F(y).
设随机变量X1,X2,…,Xm-n(m<n)独立同分布,其方差为σ2,令求:(I)D(Y),D(Z);(Ⅱ)ρYZ.