设A为n阶矩阵,A
T
是A的转置矩阵,对于线性方程组(Ⅰ)Aχ=0和(Ⅱ)A
T
Aχ=0,必有( )
计算
设α
i
=(a
i
,b
i
,c
i
)
T
,i=1,2,3,则平面上三条直线a
1
x+a
2
y+a
3
=0,b
1
x+b
2
y+b
3
=0,c
1
x+c
2
y+c
3
=0 交于一点的充分必要条件是
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
设直线L过A(1,0,0),8(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为力. (1)求曲面∑的方程; (2)求Ω的形心坐标.
设P(x,y,z),Q(x,y,z),R(x,y,z)在区域Ω连续,Г:x=x(t),y=y(t),z=z(t)是Ω中一条光滑曲线,起点A,终点B分别对应参数tA与tB,又设在Ω上存在函数u(x,y,z),使得du=Pdx+Qdy+Rdz(称为Pdx+Qdy+Rdz在Ω的原函数).求证:I=
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
求函数f(x,y)=x
2
+2y
2
-x
2
y
2
在区域D={(x,y)|x
2
+y
2
≤4,y≥0,x≥0}上的最大值和最小值。
(2007年试题,17)求函数f(x,y)=x
2
+2y
2
一x
2
y
2
在区域D={(x,y)|x
2
+y
2
≤4,y≥0}上的最大值和最小值.