求的和S.
设f(x)在[a,b]上连续且单调增加,证明:
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(I)证明二次型f对应的矩阵为2ααT+ββT.(II)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
(1998年试题,三)求直线在平面π:x一y+2z—1=0上的投影直线l0的方程,并求l0绕y轴旋转一周所成曲面的方程.
设B=2A-E,证明:B
2
=E的充分必要条件是A
2
=A.
已知随机变量X的概率密度为fX(χ)=a。(Ⅰ)求a;(Ⅱ)令Y=max{X,X2},试求Y的概率密度函数。
求.
设A,B为n阶矩阵,且A,B的特征值相同,则( ).
计算曲线积分I=,其中L是以点(1,0)为中心,R为半径的圆周(R≠1),取逆时针方向.
设α
1
,α
2
,…,α
n-1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n-1
正交,则( )
计算I=,其中:(Ⅰ)∑为球面z=(a>0)的上侧;(Ⅱ)∑为椭球面=1(z≥0)的上侧。