下列命题正确的是( ).
设A是n阶实对称矩阵,若对任意的n维列向量α恒有α
T
Aα=0,证明A=0.
设A是n阶矩阵,α是n维列向量,若=r(A),则线性方程组()
设,计算(1)gradu;(2)div(gradu);(3)rot(gradu).
设A为n阶实对称矩阵,满足A
2
=E,并且r(A+E)=k<n.
(Ⅰ)求二次型x
T
Ax的规范形.
(Ⅱ)证明B=E+A+A
2
+A
3
+A
4
是正定矩阵,并求|B|.
曲线y=()
设n维列向量α
1
,α
2
,…,α
n-1
,β线性无关,且与非零向量β
1
,β
2
都正交.证明β
1
,β
2
线性相关,α
1
,α
2
,…,α
n-1
,β
1
线性无关.
进行独立重复试验直到试验取得首次成功为止,设每次试验的成功率都是p(0<p<1).现进行10批试验,其各批试验次数分别为5,4,8,3,4,7,3,1,2,3.求:(Ⅰ)试验成功率p的矩估计值; (Ⅱ)试验失败率q的最大似然估计值.
设收敛,并求其和.
求曲面z=1+χ
2
+y
2
上任一点(χ
0
,y
0
,z
0
)的切平面与z=χ
2
+y
2
所围成立体Ω的体积,以及当(χ
0
,y
0
,z
0
)=(0,0,1)时Ω的表面积.