设a1n=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
求
曲线y=arctan渐近线的条数是
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系( )
设A、B都是n阶方阵,且A
2
=E,B
2
=E,|A|+|B|=0,证明:|A+B|=0.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则( ).
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;(Ⅱ)又设f(x)在区间(0,1)内可导,且f"(x)>-,证明(Ⅰ)中的x0是唯一的。