设曲面z=(x2+y2),其面密度μ为常数,求该曲面在0≤z≤部分S的质量与质心.
设f(x),g(x)在x=x
0
某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(c)在点(x
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x
0
)
2
)(x→x
0
).
设Ω={(x,y,z)|x2+y2+z2≤x+y+z+},求I=(x+y+z)dxdydz.
设A为n阶矩阵,α
1
,α
2
,α
3
为n维列向量,其中α
1
≠0,且Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,证明:α
1
,α
2
,α
3
线性无关.
设(2E~C-1)A=C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
求
设位于第一卦限的曲线y=f(x)上任一点P(x,y)的切线在x轴上的截距等于该点法线在y轴上截距的相反数,且曲线经过点(1,0),求该曲线.
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解,A
*
是A的伴随矩阵,则有( ).
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
(1997年试题,七)已知是矩阵的一个特征向量.
A是n阶方阵,|A|=3.则|(A*)*|=()