设随机变量X~t(n)(n>1),Y=,则()
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记(Ⅰ)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
设随机变量(X,Y)的联合密度为f(x,y)=.求:
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
设随机变量X的绝对值不大于1,P(X=-1)=1/8,P(X=1)=1/4,在{=1<X<1}出现的条件下,X在区间(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比,求X的分布函数F(x).
设总体X服从正态分布N(μ,σ
2
),其中σ
2
已知,则总体均值μ的置信区间长度L与置信度1一α的关系是( )
有100道单项选择题,每个题中有4个备选答案,且其中只有一个答案是正确的.规定选择正确得1分,选择错误得0分.假设无知者对于每一个题都是从4个备选答案中随机地选答,并且没有不选的情况,计算他能够超过40分的概率.
设随机变量X服从二项分布B(n,p),随机变量Y为求:(Ⅰ)Y的概率分布;(Ⅱ)Y的期望EY与方差DY.
设X1,X2,…Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi—,i=1,2,…,n.求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Y1与Yn的协方差Cov(Y1,Yn).
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,Xn(n>2).令的数学期望.
设二维随机变量(X1,X2)的密度函数为f1(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=X2)的概率密度f2(y1,y2)等于()
设X~N(μ,4
2
),Y~N(μ,5
2
),令p=P(X≤μ一4),q=P(Y≥μ+5),则( ).
设为未知参数θ的无偏一致估计,且的()
设随机变量X服从参数为1的指数分布。记Y=max{X,1},则E(Y)=( )
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。(Ⅰ)求Y的概率密度fF(y);(Ⅱ)
B选择题下列每题给出的四个选项中,只有一个选项符合题目要求。/B
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn是分别来自总体X与Y的两个相互独立的简单随机样本,统计量服从t(n)分布,则等于()
某箱装有100件产品,其中一、二和三等品分别为80、10和10件,现在从中随机抽取一件,记试求:(Ⅰ)随机变量X1与X2的联合分布;(Ⅱ)随机变量X1和X2的相关系数ρ。
设总体X~N(μ,σ12),Y~N(μ,σ22),且X,Y相互独立,来自总体X,Y的样本均值为,样本方差为S12,S22.记a=,求统计量U=a的数学期望.
某考生想借张宇编著的《张宇高等数学18讲》,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.