设f(x)在x=a处四阶可导,且f'(a)=f''(a)=f'''(a)=0,但f
(4)
(a)≠0,求证:当f
(4)
(a)>0(<0)时x=a是f(x)的极小(大)值点.
设有二阶线性微分方程(1-χ2)+y=2χ.求:作自变量替换χ=sint(),把方程变换成y关于t的微分方程.
求微分方程=1+x+y+xy的通解.
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正方向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,任意时刻B点的坐标(x,y),试建立物体B的运动轨迹(y作为x的函数)所满足的微分方程,并写出初始条件.
求微分方程yy""+(y")2=0的满足初始条件y(0)=1,y"(0)=的特解.
(1989年)微分方程y〞-y=e
χ
+1的一个特解应具有形式(式中a,b为常数) 【 】
设线性无关的函数y
1
.y
2
,y
3
都是二阶非齐次线性微分方程y”+py’+qy=f(x)的解,C
1
、C
2
是任意常数,则该非齐次方程的通解是
设f(x)在(0,+∞)二阶可导且f(x),f''(x)在(0,+∞)上有界,求证:f'(x)在(0,+∞)上有界.
设当u>0时f(u)一阶连续可导,且f(1)=0,又二元函数z=f(ex-ey)满足=1,求f(u).
求下列微分方程满足初始条件的特解:(1)(y+x3)dx一2xdy=0,且(2)x2y’+xy=y2,且y|x=1=1;(3)xy’+(1一x)y=e2x(x>0),且y|x=1=0;(4)
设f(x)在[0,1]上连续且满足f(0)=1,f"(x)-f(x)=a(x-1).y-f(x),=0,x=1,y=0围成的平面区域绕z轴旋转一周所得的旋转体体积最小,求f(x).
设y(χ)、y(χ)为二阶变系数齐次线性方程y〞+p(χ)y′+q(χ)y=0的两个特解,则C
1
y
1
(χ)+C
2
y
2
(χ)(C
1
,C
2
为任意常数)是该方程通解的充分条件为
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶内流出的水中含盐所满足的微分方程.
求方程y"+4y=3|sinx|满足初始条件.一π≤x≤π的特解.