(2001年)设L是一条平面曲线,其上任意一点P(χ,y)(χ>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(,0).(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线.使该切线与L以及两坐标轴所围图形的面积最小.
设非负函数f(χ)当χ≥0时连续可微,且f(0)=1.由y=f(χ),χ轴,y轴及过点(χ,0)且垂直于χ轴的直线围成的图形的面积与y=f(χ)在[0,χ]上弧的长度相等,求f(χ).
求微分方程y""-y"+2y=0的通解.
求方程x
2
ydx-(x
3
+y
3
)dy=0的通解.
微分方程xdy+2ydx=0满足初始条件y|
x=2
=1的特解为( )
求微分方程χy′=yln的通解.
设f(u,v)具有连续偏导数,且f
u
"(u,v)+f
u
"(u,v)=sin(u+v)e
u+v
,求y(x)=e
-2x
f(x,x)所满足的一阶微分方程,并求其通解
求微分方程χy〞+3y′=0的通解.
已知y
1
=xe
x
+e
2x
,y
2
=xe
x
+e
-x
,y
3
=xe
x
+e
2x
—e
-x
是某二阶线性非齐次方程三个解,求此微分方程.
求微分方程=1+χ+y+χy的通解.
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f'(x)当→a时是x-a的a-1阶无穷小.
设f(χ)为连续正值函数,χ∈[0,+∞),若平面区域Rt={(χ,y)}0≤χ≤t,0≤y<f(χ)}(t>0)的形心纵坐标等于曲线y=f(χ)在[0,t]上对应的曲边梯形面积与之和,求f(χ).
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化.
设f(μ,ν)具有连续偏导数,且满足f
μ
'
(μ,ν)+f
ν
'
(μ,ν)=μν。求y(x)=e
-2x
f(x,x)所满足的一阶微分方程,并求其通解。
设线性无关的函数y
1
,y
2
,y
3
都是二阶非齐次线性方程y""+P(x)y"+q(x)y=f(x)的解,C
1
,C
2
是任意常数,则该非齐次方程的通解是( )