一民航送客车载有20名乘客自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,假设每位旅客在各个车站下车的可能性相同,且各个旅客是否下车相互独立,求停车次数X的数学期望.
设二维离散型随机变量(X,Y)的联合概率分布为(1)写出关于X,Y及XY的概率分布;(2)求X和Y的相关系数ρXY
设(X,Y)服从二维正态分布,且X与Y不相关,f
X
(x),f
Y
(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度f
X|Y
(x|y)为( )
若随机变量X与Y满足Y=1一,且D(X)=2,则cov(X,Y)=()
设连续型随机变量X的分布函数和概率密度函数分别为F(x)和f(x),则( )
设X1,X2,…,Xn(n>1)是取自总体X的一个简单随机样本,.在下列四种情况下,分别求,E(S2).(1)X服从B(1,p);(2)X服从E(λ);(3)X服从N(μ,σ2).
设随机事件A,B满足P(A)=P(B)=,P(A∪B)=1,则有()
设(X,Y)在区域D={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,事件A={X≤a},B={Y>a}.(1)若P(A∪B)=,求a;(2)设D0为事件A∪B所占的区域,随机地向D投点4次,Z为落入D0内的次数,求E(Z2).
设总体X的概率密度为f(x)=,其中一∞<θ1<+∞,0<θ2<+∞,X1,X2,…,Xn为来自总体X的随机样本,试求θ1,θ2的最大似然估计量.
设总体X服从β(n,p),又X1,X2,…,Xn为取自总体X的一个简单随机样本,统计量T1=—S2,求E(T1)和E(T2).
设相互独立的两个随机变量X,Y服从相同的分布,且X的概率分布为又随机变量Z=min{X,Y}.(1)求(X,Z)的概率分布;(2)X与Z是否相互独立?
已知X与Y服从相同的分布,且P{|X|=|Y|}=0,X的概率分布为(1)求X与Y的联合概率分布;(2)问X与Y是否不相关?
填空题设随机变量X和Y的数学期望都是2,方差分别为1和4,而相关系数为0.5,则根据切比雪夫不等式,有P{|X—Y|>6}≤__________.
填空题设A,B,C是三个随机事件,且P(A)=0.4,P(B)=0.6,P(C)=0.5,又AB,A,C相互独立,则P((A—C)B|AC∪B)=________.
填空题某人向同一个目标进行独立重复射击,每次射击命中目标的概率为p,此人第4次射击恰好第2次命中目标的概率为,则p=________。
填空题设随机变量X在区间[a,b](a>0)上服从均匀分布,且P{0<x<3}=,则P{-1<X<5}=________。
填空题设两两相互独立的三事件A,B和C满足条件:ABC=,且已知P(A∪B∪C)=,则P(A)=________。
填空题一射手进行射击,击中目标的概率为p(0<p<1),现在他领到5发子弹,进行射击直到命中目标或子弹用完为止,以X表示他射击实际脱靶的次数,则P{x=1}=__________.
解答题将长为2m的铁丝分成三段,依次围城圆、正方形与正三角形,三个图形的面积之和是否存 在最小值?若存在
解答题设实二次型f(x1,x2