设f(x)在[0,1]上连续且满足f(0)=1,f"(x)-f(x)=a(x-1).y-f(x),=0,x=1,y=0围成的平面区域绕z轴旋转一周所得的旋转体体积最小,求f(x).
设当u>0时f(u)一阶连续可导,且f(1)=0,又二元函数z=f(ex-ey)满足=1,求f(u).
求下列微分方程满足初始条件的特解:(1)(y+x3)dx一2xdy=0,且(2)x2y’+xy=y2,且y|x=1=1;(3)xy’+(1一x)y=e2x(x>0),且y|x=1=0;(4)
设f(x)在(0,+∞)二阶可导且f(x),f''(x)在(0,+∞)上有界,求证:f'(x)在(0,+∞)上有界.
在宽为2R的河面上,任一点处的流速与该点到两岸距离之积成正比.已知河道中心线处水的流速为,则河面上距河道中心线r处河水的流速v(r)在区间[—R,R]上的平均值
设f(x)为连续函数,a与m是常数且a>0,将二次积分化为定积分,则I=______.
求方程y"+4y=3|sinx|满足初始条件.一π≤x≤π的特解.
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分。求曲线y=f(x)的方程。
设y(χ)、y(χ)为二阶变系数齐次线性方程y〞+p(χ)y′+q(χ)y=0的两个特解,则C
1
y
1
(χ)+C
2
y
2
(χ)(C
1
,C
2
为任意常数)是该方程通解的充分条件为
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶内流出的水中含盐所满足的微分方程.
求微分方程y〞-y′+2y=0的通解.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
在x=0处展开下列函数至括号内的指定阶数:
(Ⅰ)f(x)=tanx(x
3
);
(Ⅱ)f(x)=sin(sinx)(x
3
).
设y=y(χ)二阶可导,且y′≠0,χ=χ(y)是y=y(χ)的反函数.(1)将χ=χ(y)所满足的微分方程=0变换为y=y(χ)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y′(0)=的解.
设当χ>0时,f(χ)满足∫
1
χ
f(t)dt-f(χ)=χ,求f(χ).
