求下列函数的带皮亚诺余项的麦克劳林公式:
(Ⅰ)f(x)=sin
3
x;
(Ⅱ)f(x)=xln(1-x
2
).
设二阶常系数线性微分方程y〞+ay′+by=ce
χ
有特解y=e
2χ
+(1+χ)e
χ
,确定常数a,b,c,并求该方程的通解.
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降到m0以内(设湖中A的浓度是均匀的)?
(2006年)函数y=C
1
e
χ
+C
2
e
-2χ
+χe
χ
满足的一个微分方程是 【 】
用变量代换χ=sint将方程(1-χ2)-4y=0化为y关于t的方程,并求微分方程的通解.
已知A=,则=__________。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。
设y
1
(x)、y
2
(x)为二阶变系数齐次线性方程y''+P(x)y'+q(x)y=0的两个特解,则C
1
y
1
(x)+C
2
y
2
(x)(C
1
,C
2
为任意常数)是该方程通解的充分条件为
求解下列方程:
(Ⅰ)求方程xy''=y'lny'的通解;
(Ⅱ)求yy''=2(y
t2
-y')满足初始条件y(0)=1,y'(0)=2的特解.
求微分方程χy′+(1-χ)y=e2χ(χ>0)的满足y(χ)=1的特解.
设函数f(χ)二阶连续可导,f(0)=1且有f′(χ)+3∫
0
χ
f′(t)dt+2χ∫
0
1
f(tχ)dt+e
-χ
=0,求f(χ).
设函数y=y(x)满足微分方程
y"-3y’+2y=2e
x
,
且其图形在点(0,1)处的切线与曲线y=x
2
一x+1在该点的切线重合,求y=y(x)的表达式.
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=e4πt2+.试求f(t)
B解答题解答应写出文字说明、证明过程或演算步骤。/B
设y=e
x
是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|
x=ln2
=0的特解.
(2015年)已知高温物体置于低温介质中,任一时刻该物体温度对时间的变化率与该时刻物体和介质的温差成正比.现将一初始温度为120℃的物体在20℃恒温介质中冷却,30min后该物体温度降至30℃,若要将该物体的温度继续降至21℃,还需冷却多长时间?
