A是n阶矩阵,|A|=3.则|(A*)*|=()
下列矩阵中与合同的矩阵是()
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
(1993年)设f(χ)=,则在点χ=1处函数f(χ)【】
设函数f(x)=sinx,则f(x)有()
已知α1,α2是非齐次线性方程组Ax=b的两个不同的解,那么中,仍是线性方程组Ax=b特解的共有()
求
设A=,且AX+|A|E=A*+X,求X.
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
设z=f(u,χ,y),u=χey,其中f具有二阶偏导数,求
设函数f(x)=x/1+x,x∈[0,1].定义函数列:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),…记Sn是由曲线y=fn(x),直线x=1及x轴所围平面图形的面积,求极限
设u=f(x,y,xyz),函数z=z(x,y)由h(xy+z-t)dt确定,其中f连续可偏导,h连续,求
设非负函数y=y(x)(x≥0)满足微分方程xy"-y"+2=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
(1997年)已知函数f(χ)连续,且=2,设φ(χ)=∫01f(χt)dt,求φ′(χ),并讨论φ′(χ)的连续性.
证明:当χ>0时,e
χ
-1>(1+χ)ln(1+χ).
已知A=r(A*)=1,则
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组AX=β的3个线性无关的解,k
1
,k
2
为任意常数,则AX=β的通解为( )