设矩阵A
m×n
,r(A)=m<n,E
m
为m阶单位矩阵,下述结论中正确的是( ).
设矩阵A=(α
1
,α
2
,α
3
,α
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
一a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程Ax=b的通解.
求∫e
x
sin
2
xdx.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),
使得
abe
η-ξ
=η
2
[f(η)-f'(η)].
设f(χ,y)=求f(χ,y)dχdy,其中D={(χ,y)|a≤χ+y≤b}(0<a<b).
求不定积分∫cos(lnχ)dχ.
比较下列积分值的大小:(Ⅰ)I1=,其中D由x=0,y=0,x+y=,x+y=1围成,则I1,I2,I3之间的大小顺序为(A)I1<I2<I3.(B)I3<I2<I1.(C)I1<I3<I2.(D)I3<I1<I2.(Ⅱ)Ji=,i=1,2,3,其中D1={x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤2R2},D3={(x,y)|x|≤R,|y|≤R}.则J1,J2,J3之间的大小顺序为(A)J1<J2<J3.(B)J2<J3<J1.(C)J1<J3<J2.(D)J3<J2<J1.
设A是m×n矩阵,且m>n,下列命题正确的是( ).
求V(t)=[(t一1)y+1]dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,一≤y≤1},2≤t≤3。
阶矩阵A,B满足ABA*=2BA*+E,其中A=,求|B|.
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫abf'(x)|dx(a<x<b).
设f1(x)=,f2(x)=f1[f1(x)],fk+1(x)=f1[f1(x)],k=1,2,…,则当n>1时,fn(x)=()
设ξ
1
,ξ
2
,ξ
3
,ξ
1
+aξ
2
-2ξ
3
均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解 ( )
计算定积分