设f(x)为二阶可导的奇函数,且x0,f"(x)0时有( ).
给定曲线y=x2+5x+4,(Ⅰ)确定b的值,使直线y=x+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
(2011年试题,二)设函数.则
求方程组的通解.
设α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,而向量组α
1
,α
2
,…,α
m
,γ线性相关.证明:向量γ,可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明:(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:(i)∈[0,1],f(λx1+(1一λ)x2)≤λf(x1)+(1—λ)f(x2),x1,x2∈[a,b];(iv)f(x)为(a,b)上的连续函数.
设f(x)在x
0
处n阶可导,且f
(n)
(x
0
)=0(m=1,2,…,n一1),f
(n)
(x
0
)≠0(n>2),证明:当n为奇数时,(x
0
,f(x
0
))为拐点.
B解答题解答应写出文字说明、证明过程或演算步骤。/B
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价. (2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设g(x)=∫0xf(u)du,其中则g(x)在(0,2)内().
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫
0
ξ
f(t)dt+(ξ-1)f(ξ)=0.
设y=x
2
ln(1+2x),求y
(5)
设由e
-y
+x(y—x)=1+x确定y=y(x),求y"(0).
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=.属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设,则().
F(x)=cosx|sin2x|在(0,2x)内( ).