(1)设χ≥-1,求∫-1χ(1-|t|)dt.(2)设f(χ)=,求.
B解答题解答应写出文字说明、证明过程或演算步骤。/B
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足=-z,若f(x,y)在D内没有零点,则f(x,y)在D上().
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
(2004年试题,二)微分方程y
""
+y=x
2
+1+sinx的特解形式可设为( ).
设f(x)连续且f(0)=0,f'(0)=2,求极限
(2011年)设函数f(χ),g(χ)均有二阶连续导数,满足f(0)>0,g(0)<0,且f′(0)=g′(0)=0,则函数z=f(χ)g(y)在点(0,0)处取得极小值的一个充分条件是 【 】
设f(χ)=,g(χ)=∫0χ-sin2(χ-t)dt,则当χ→0时,g(χ)是f(χ)的().
已知二次型f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+3x
3
2
+2ax
2
x
3
(a>0),若二次型f的标准形为f=y
1
2
+2y
2
2
+5y
3
2
,求a的值及所使用的正交变换矩阵。
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x
2
一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。
已知函数f(u,v)具有连续的二阶偏导数f(1,1)=2是f(u,v)的极值,已知z=f(x+y)f(x,y)].求
设函数f(x)在[0,1]上二阶可导,且f(0)=f"(0)=f"(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f'(x0)=M.
求极限
设函数,则()
设A为n阶可逆矩阵,A
*
为A的伴随矩阵,证明:(A
*
)
T
=(A
T
)
*
。
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关,如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
.