求
设0<x1<1,xn+1=∫01max{xn,t}dt,n=1,2,3,…,证明:xn存在并求此极限。
设3阶矩阵A=(α
1
,α
2
,α
3
),|A|=1,B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
),求|B|.
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx。(Ⅱ)计算∫02πdx。
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设二次型f=2χ
1
2
+2χ
2
2
+aχ
3
2
+2χ
1
χ
2
+2bχ
1
χ
3
+2χ
2
χ
3
经过正交变换X=QY化为标准形f=y
1
2
y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
设有半径为a,面密度为σ的均匀圆板,质量为m的质点位于通过圆板中心O且垂直于圆板的直线上,=b,求圆板对质点的引力.
已知α
1
=(1,一1,1)
T
,α
2
=(1,t,一1)
T
,α
3
=(t,1,2)
T
,β=(4,t
2
,一4)
T
,若β可由向量组α
1
,α
2
,α
3
线性表示,且表示法不唯一,求t及β的表达式。
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA;
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
设f(x)=2
x
+3
x
一2,则当x→0时( )
证明:当χ>0时,χ
2
>(1+χ)ln
2
(1+χ).
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A=E一2XX
T
,其中X=[x
1
,x
2
,…,x
n
]
T
,且X
T
X=1,则A不是 ( )