设B是4×2的非零矩阵,且AB=0,则()
设f(χ)在[0,1]上可导,f(0)=0,|f′(χ)|≤|f(χ)|.证明:f(χ)≡0,χ[0,1].
求圆χ
2
+y
2
=2y内位于抛物线y=χ
2
上方部分的面积.
计算
B选择题下列每题给出的四个选项中,只有一个选项符合题目要求。/B
设f(x)=3x
2
+x
2
|x|,求使得f
(n)
(0)存在的最高阶数n.
已知A=,a是一个实数.(1)求作可逆矩阵U,使得U-1AU是对角矩阵.(2)计算|A-E|.
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n—r+1个线性无关的解。试证它的任一解可表示为
x=k
1
η
1
+…+k
n-r+1
η
n-r+1
,其中k
1
+…+k
n-r+1
=1。
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
B解答题解答应写出文字说明、证明过程或演算步骤。/B
对于实数x>0,定义对数函数Inx=依此定义试证:(1)=一lnx(x>0);(2)ln(xy)=lnx+Iny(x>0,y>0).
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表示式的系数全不为零,证明:α
1
,α
2
,…,α
s
,β中任意5个向量线性无关.
若f
''
(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x
2
+y
2
=2,则函数f(x)在区间(1,2)内( )
设a>e,0<χ<y<,求证ay-aχ>(cosχ-cosy)aχlna.
构造正交矩阵Q,使得QTAQ是对角矩阵