B解答题解答应写出文字说明、证明过程或演算步骤。/B
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
求微分方程y〞+y+3+cosχ的通解.
计算曲线y=(0≤χ≤π)的弧长.
(1992年)若f(χ)的导函数是sinχ,则f(χ)有一个原函数为 【 】
求∫f(χ)dχ.
设有多项式P(χ)=χ4++a1χ+a0,又设χ=χ0是它的最大实根,则P′(χ0)满足
a,b取何值时,方程组有解?
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组的系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
(2002年试题,二)设函数f(u)可导,y=f(x
2
)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△),的线性主部为0.1,则f
"
(1)=( ).
已知曲线L的方程367(1)讨论L的凹凸性;(2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
设η
1
,…,η
k
是非齐次线性方程组Ax=b的s个解,k
1
,…,k
s
为实数,满足k
1
+k
2
+…+k
s
=1。证明x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是方程组的解。
求极限:.
微分方程y""+y"+y=的一个特解应具有形式(其中a,b为常数)()