设α,β均为三维单位列向量,并且α
T
β=0,若A=αα
T
+ββ
T
,则必有非零列向量x,使Ax=0,并且A与A相似,写出对角矩阵A.
设A为三阶方阵,A*;为A的伴随矩阵,,则|4A一(3A*)一1|=()
设A是n(n≥3)阶矩阵,证明:(A
*
)
*
=|A|
n-2
A.
设f(x)=,则()
设f(x)=又a≠0,问a为何值时存在.
求极限
已知矩阵有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q一1AQ=A。
求∫
0
1
3χ
2
arcsinχdχ.
已知y
1
*
(χ)=χe
-χ
+e
-2χ
,y
2
*
(χ)=χe
-χ
+χe
-2χ
,y
3
*
(χ)=χe
-χ
+eχ
-2χ
+χe
-2χ
是某二阶线性常系数微分方程y〞+Py′+qy=f(y)的三个特解.
(Ⅰ)求这个方程和它的通解;
(Ⅱ)设y=y(χ)是该方程满足y(0)=0,y′(0)=0的特解,求∫
0
+∞
y(χ)dχ.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M
0
(2,0)为L上一定点,若极径OM
0
,OM与曲线L所围成的曲边扇形面积值等于L上M
0
、M两点间弧长值的一半,求曲线L的方程.
(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记则A=【】
(2000年试题,四)设Oxy平面上有正方形D=|(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
(1997年)设在区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫ab(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则
设{a
n
}与(b
n
}为两个数列,下列说法正确的是( ).
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记