B选择题下列每题给出的四个选项中,只有一个选项符合题目要求。/B
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
设二次型
f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
,(b>0)
其中A的特征值之和为1,特征值之积为-12.
(1)求a,b.
(2)用正交变换化f(x
1
,x
2
,x
3
)为标准型.
∫χtanχsec
4
χdχ
设η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,k
1
,…,k
s
为实数,满足k
1
+k
2
+…+k
s
=1。证明x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是方程组的解。
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
变换二次积分的积分次序:
设f(χ)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:(1)存在ξ
1
,ξ
2
∈(0,3),使得f′(ξ
1
)=f′(ξ
2
)=0.
(2)存在ξ∈(0,3),使得f〞(ξ)-2f′(ξ)=0.
设二元函数f(χ,y)=|χ-y|φ(χ,y),其中φ(χ,y)在点(0,0)处的某邻域内连续.证明:函数f(χ,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设f(χ)=,求f(χ)的连续区间及间断点.
(Ⅰ)设f(χ)在(a,+∞)可导且f′(χ)=A,求证:若A>0,则f(χ)=+∞;若A<0,则)f(χ)=-∞.(Ⅱ)设g(χ)在[a,+∞)连续,且∫a+∞g(χ)dχ收敛,又g(χ)=1,求证l=0.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
函数f(χ)=χ
3
-3χ+k只有一个零点,则k的范围为( ).
B解答题解答应写出文字说明、证明过程或演算步骤。/B
计算所围成.
在下列微分方程中以y=C
1
e
x
+C
2
cos2x+C
3
sin2x(C
1
,C
2
,C
3
为任意常数)为通解的是 ( ).
举例说明函数可导不一定连续可导.