问答题已知求An(n≥3).
问答题已知n阶方阵A满足矩阵方程A
2
一3A-2E=O.证明A可逆,并求出其逆矩阵A
-1
.
问答题设f(x)=,(Ⅰ)求证:f(x)在[0,+∞)上连续;(Ⅱ)求f(x)在[0,+∞)的单调性区间;(Ⅲ)求f(x)在[0,+∞)的最大值与最小值。
问答题设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
问答题已知A是n阶矩阵,α
1
,α
2
,…,α
s
是n维线性无关向量组,若Aα
1
,Aα
2
,…,Aα
s
线性相关.证明:A不可逆.
问答题设A,B均为n阶矩阵,A有n个互不相同的特征值. 证明:(1)若AB=BA,则B相似于对角矩阵; (2)若A的特征向量也是B的特征向量,则AB=BA.
问答题如果A正定,则A
k
,A
-1
,A*也都正定.
问答题计算(1+x2+y2)dxdy,其中D:x2+y2≤1.
问答题设试证明:P(A)+P(B)一P(C)≤1.
问答题(1)设平面区域D={(x,y)|0≤x≤2,0≤y≤2),求二重积分(2)设f(x,y)在上述D上连续,且[*证明:存在点(ξ,η)∈D使|f(ξ,η)|≥1.
问答题n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
问答题设总体X服从参数为N和p的二项分布,X
1
,X
2
,…,X
n
为取自X的样本,试求参数N和p的矩估计.
问答题已知β可用α
1
,α
2
,…,α
s
线性表示,但不可用α
1
,α
2
,…,α
s-1
线性表示.证明
(1)α
s
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
问答题一实习生用一台机器连续生产了三个同种零件,第i个零件是不合格品的概率(i=1,2,3),以X表示三个零件中合格品的个数,求X的分布律.
问答题设A,B都是n阶矩阵,使得A+B可逆,证明
B(A+B)
-1
A=A(A+B)
-1
B.
问答题设D={(x,y)|x2+y2≤1,|y|≤|x|},求
问答题
问答题已知向量组α
1
,α
2
,…,α
s+1
(s>1)线性无关,β
i
=α
i
+tα
i+1
,i=1,2,…,s.证明:向量组β
1
,β
2
,…,β
s
线性无关.
问答题(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价. (2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
问答题设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n: