问答题求连接两点A(0,1)与B(1,0)的一条可微曲线,它位于弦AB的上方,并且对于此弧上的任意一条弦AP,该曲线与弦AP之间的面积为x
4
,其中x为点P的横坐标.
问答题设α
1
=(1,一1,2,4),α
2
=(0,3,1,2),α
3
=(3,0,7,14),α
4
=(1,一2,2,0),α
5
=(2,1,5,10),它们的下列部分组中,是最大无关组的有哪几个?
(1)α
1
,α
2
,α
3
. (2)α
1
,α
2
,α
4
. (3)α
1
,α
2
,α
5
. (4)α
1
,α
3
,α
4
问答题设随机变量X的概率密度为求X的分布函数.
问答题向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C若α1,α2,…,αs线性无关.证明:r(β1,β2,…,βt)=r(C).
问答题设函数x=x(y)由方程x(y—x)2=y所确定,试求不定积分
问答题设X关于Y的条件概率密度为且Y的概率密度为
问答题求函数f(x,y)=x
2
+y
2
一12x+16y在区域D={(x,y)|x
2
+y
2
≤25}上的最大值和最小值.
问答题已知二次型
f(x
1
,x
2
,x
3
)=x
1
2
+4x
2
2
+4x
3
2
+2λx
1
x
2
—2x
1
x
3
+4x
2
x
3
.
当λ满足什么条件时f(x
1
,x
2
,x
3
)正定?
问答题独立重复某项试验,直到成功为止,每次试验成功的概率为p,假设前5次试验每次试验费用为100元,从第6次起,每次试验费用为80元,试求该项试验总费用的期望值W。
问答题设三元线性方程组有通解求原方程组.
问答题某系统由两个相互独立工作的元件串联而成,只要有一个元件不工作,系统就不工作,设第i个元件工作寿命为X
i
,已知X
i
~E(λ
i
),λ
i
>0,i=1,2.试求:
(1)该系统的工作寿命X的概率密度f(x);
(2)证明:对t,s>0有P{X>t+s|X>t}=P{X>s}.
问答题设两条抛物线y=nx2+和y=(n+1)x2+记它们交点的横坐标的绝对值为an.求:(1)这两条抛物线所围成的平面图形的面积Sn;(2)级数的和.
问答题设X1,X2,…Xn是独立同分布的随机变量序列,EXi=μ,DXi=σ2,i=1,2。…,n,令Yn=证明:随机变量序列{Yn}依概率收敛于μ.
问答题设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
问答题设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
问答题设随机变量X~和随机变量Y~N(0,1),且X与Y相互独立.令Z=(X一1)Y,记(Y,Z)的分布函数为F(y,z).(1)求Z的分布函数FZ(z);(2)已知=0.8413,求F(1,1)的值.
问答题设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(x1,x2,…,xn)=(1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
问答题设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(一1,0,1,0)
T
,ξ
3
=(0,1,1,0)
T
是(I)的一个基础解系,η
1
=(0,1,0,1)
T
,η
2
=(1,1,一1,0)
T
是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
问答题设随机变量Y~E(1),且X与Y相互独立.记Z=(2X—1)Y,(Y,Z)的分布函数为F(y,z).试求:(I)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
问答题给定向量组(I)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?