问答题判别级数的敛散性.
问答题如图1.3—1所示,设曲线方程为梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
问答题设A是n阶矩阵,满足AA
T
=E(E是n阶单位矩阵,A
T
是A的转置矩阵),|A|<0,求|A+E|.
问答题已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
问答题求不定积分
问答题设D为曲线y=x3与直线y=x所围成的两块区域,计算
问答题设3阶矩阵A的各行元素之和都为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
都是齐次线性方程组AX=0的解.求A.
问答题求微分方程(4一x+y)dx一(2一x-y)dy=0的通解.
问答题将f(x)=展开为x+1的幂级数.
问答题求幂级数的收敛域与和函数,并求的和.
问答题求(|x|+|y|)dxdy.其中D是由曲线xy=2,直线y=x-1,y=x+1所围成的区域.
问答题设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)(1+xn)收敛;(Ⅲ)Fn(x)=+∞。
问答题已知线性方程组问:(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
问答题求此齐次方程组的一个基础解系和通解.
问答题求
问答题设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
问答题设问A,B是否相似,并说明理由.
问答题已知
问答题3阶实对称矩阵A的特征值为1,2,一2,α
1
=(1,一1,1)
T
是A的属于1的特征向量.记B=A
5
一4A
3
+E.
(1)求B的特征值和特征向量.
(2)求B.
问答题设f(x)在区间(一∞,+∞)上连续,且满足
f(x)[∫
0
x
e
t
f(t)dt+1]=x+1.
求f(x)的表达式,并证明所得到的f(x)的确在(一∞,+∞)上连续.