设随机变量X在[0,1]上服从均匀分布,记事件则()
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求—F3i事件发生的概率: (1)两个球中一个是红球一个是白球; (2)两个球颜色相同.
设总体X具有概率密度:从此总体中抽得简单样本X1,X2,X3,X4,求T=Xi的密度fT(t).
在电炉上安装了4个温控器,其显示温度的误差是随机的。在使用过程中,只要有两个温控器显示的温度不低于临界温度t
0
,电炉就断电。以E表示事件“电炉断电”,而T
1
≤T
2
≤T
3
≤T
4
为四个温控器显示的按递增顺序排列的温度值,则事件E=( )
3架飞机(其中有1架长机和2槊僚机)去执行轰炸任务,途中要过一个敌方的高炮阵地。各机通过高炮阵地的概率均为0.8,通过后轰炸成功的概率均为0.3,各机间相互独立,但只有长机通过高炮阵地才有可能轰炸成功。求最终轰炸成功的概率。
设随机变量X,Y相互独立,它们的分布函数为Fx(x),F
Y
(y),则Z=max{X,Y)的分布函数为( ).
设总体X~N(O,22),X1,X2,…,X30为总体X的简单随机样本,求统计量所服从的分布及自由度.
已知随机变量X,Y的概率分布分别为P{X=一1}=并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设X与Y独立且X~N(μ,σ
2
),Y服从IX间[-π,π]上的均匀分布,求Z=X+Y的密度f
Z
(z).
设随机变量X的概率密度为f(x)=,试求:
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(z),(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2)),其中σ是未知参数且σ>0,设Z=X一Y。(Ⅰ)求Z的概率密度f(z;σ2);(Ⅱ)设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量
设二维随机变量(X,Y)的概率密度为(Ⅰ)求条件概率密度fY(y|x);(Ⅱ)求条件概率P{X≤1|y≤1}。
设二维随机变量(X1,X2)的密度函数为f1(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=X2)的概率密度f2(y1,y2)等于()
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=|(X—1)|的分布函数F(y).
设随机变量X和Y都服从正态分布,则( )
设随机变量X与Y相互独立,X的概率分布为P{X=i}=(i=—1,0,1),Y的概率密度为fY(y)=记Z=X+Y。(Ⅰ)求(Ⅱ)求Z的概率密度fZ(z)。
设F
1
(x),F
2
(x)为两个分布函数,其相应的概率密度f
1
(x)与f
2
(x)是连续函数,则必为概率密度的是( )
