设A和B是任意两个概率不为零的互不相容事件,则下列结论肯定正确的是( )
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,X2n(n>2).令的数学期望.
设X~U(-1,1),Y=X
2
,判断X,Y的独立性与相关性.
在长为L的线段上任取两点,求两点之间距离的数学期望及方差.
设随机事件A与B互不相容,则()
将n个同样的盒子和n只同样的小球分别编号为1,2,…,n.把这,n只小球随机地投入n个盒子中,每个盒子中投入一只小球.问至少有一只小球的编号与盒子的编号相同的概率是多少?
设总体X服从正态分布N(0,σ2),X1,X2,…,X10是取自总体X的简单随机样本,统计量(1<i<10)服从F分布,则i等于()
设总体X的密度函数为f(x)=X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
设随机变量U服从二项分布B(2,),随机变量求随机变量X—Y与X+Y的方差和X与Y的协方差.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是( )
设随机变量X,Y相互独立,它们的分布函数为F
X
(x),F
Y
(y),则Z=min{X,Y)的分布函数为( ).
投篮测试规则为每人最多投三次,投中为止,且第i次投中得分为(4一i)分,i=1,2,3.若三次均未投中不得分,假设某人投篮测试中投篮的平均次数为1.56次.
设随机变量X,Y相互独立,它们的分布函数为Fx(x),Fy(y),则Z=max{X,Y}的分布函数为( ).
设总体X~N(0,σ2),X1,X2,…,Xn为来自总体X的简单随机样本,S2=所服从的分布.
设随机变量X,Y相互独立且都服从N(μ,σ
2
)分布,令Z=max{X,Y},求E(Z).
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)一aF1(x)+bF2(x)为某一随机变量的分布函数,则有().
已知随机变量X的分布函数FX(x)=(λ>0),Y=lnX.
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
