设Xn表示将一枚匀称的硬币随意投掷n次其“正面”出现的次数,则
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).
设随机变量X的概率密度为f(x)=令随机变量(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}。
设X的密度函数为fX(x)=(-∞<x<∞),求Y=1-的密度fY(y).
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi一(i=1,2,…,n).求:
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
B解答题解答应写出文字说明、证明过程或演算步骤。/B
设随机变量服从几何分布,其分布律为
P{X=k}=(1-P)
k-1
p,0<p<1,k=1,2,…,
求EX与DX.
设随机变量X与Y相互独立,X的概率分布为P{X=i}=(i=一1,0,1),Y的概率密度为fY(y)=记Z=X+Y(I)求(Ⅱ)求Z的概率密度fZ(z).
设总体X的密度函数为θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.
一民航班车上有20名旅客,自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X表示停车次数,求E(X)(设每位旅客下车是等可能的).
设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=______.
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
3架飞机(其中有1架长机和2架僚机)去执行轰炸任务,途中要过一个敌方的高炮阵地.各机通过高炮阵地的概率均为0.8,通过后轰炸成功的概率均为0.3,各机间相互独立,但只有长机通过高炮阵地才有可能轰炸成功.求最终轰炸成功的概率.
已知随机变量X~N(0,1),求:
一袋中装有N一1只黑球及1只白球,每次从袋中随机地取出一球,并换人一只黑球,这样继续下去、问第k次取出的是黑球的概率是多少?
B选择题下列每题给出的四个选项中,只有一个选项符合题目要求。/B
(1)设系统由100个相互独立的部件组成.运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常工作的概率.(Ф()=0.9522)(2)如果上述系统由n个部件组成,至少有80%的部件完好时系统才能正常工作.问n至少多大才能使系统正常工作的概率不小于0.957(Ф(1.645)=0.95)
某流水线上产品不合格的概率为p=,各产品合格与否相互独立,当检测到不合格产品时即停机检查,设从开始生产到停机检查生产的产品数为X,求E(X)及D(X).
