设X,Y的概率分布为且P(XY=0)=1.(1)求(X,Y)的联合分布;(2)X,Y是否独立?
设随机变量X的概率密度为求:(1)常数A;(2)使P{X>a}=P{X<a}成立的a.
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体X的样本,令,求E(X1T).
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为( )
设X的密度函数为f(x)=若P(X≥k)=,求k的取值范围.
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量
设随机变量X在[0,1]上服从均匀分布,记事件A=则()
在随机地抛掷两枚均匀骰子的独立重复试验中,求两枚骰子点数和为5的结果出现在它们的点数和为7的结果之前的概率。
设随机变量X的方差存在,并且满足不等式P{|X—EX|≥3}≤,则一定有
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设二维随机变量(X,Y)的联合密度为
设求矩阵A可对角化的概率.
连续型随机变量X的分布函数F(x)=则其中的常数a和b为()
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度f
z
(z)= ( )
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
设随机变量(X,Y)的联合密度函数为(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=a+b都是μ的无偏估计.并确定a、b,使D(T)达到最小.
设随机变量(X,Y)在区域D={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令(1)求(U,V)的联合分布;(2)求ρUV.
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<P<1),且中途下车与否相互独立,以Y表示中途下车人数.(1)求在发车时有n个乘客的情况下,中途有m个乘客下车的概率;(2)求(X,Y)的概率分布.
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
