设A,B为随机事件,P(B)>0,则( )
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|X|<x}=α,则x等于()
在长为a的线段AB上独立、随机地取两点C,D,试求CD的平均长度.
设X
1
,…,X
n
为相互独立的随机变量,S
n
=X
1
+…+X
n
,则根据列维一林德贝格中心极限定理,当n充分大时,S
n
近似服从正态分布,只要X
1
,…,X
n
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令.求:(1)D(y),D(z);(2)ρYZ.
设二维随机变量(X,Y)的联合分布律为则在Y=1的条件下求随机变量X的条件概率分布.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α[,若P{|X|<x}=α,则x等于()
设随机变量X~N(μ,σ
2
),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a, b)为( )
设作一次实验的费用为1000元,如果实验失败,则要另外再花300元对设备调整才能进行下一次的实验.设各次实验相互独立,成功的概率均为0.2,并假定实验一定要进行到出现成功为止.求整个实验程序的平均费用.
假设随机变量X的密度函数f(x)=ce
-λ|x|
(λ>0,一∞<x<+∞),Y=|X|.
设随机变量X服从参数λ=的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
在全概率公式P(B)=P(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,还可以将其他条件改为()
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{y=—1}=求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosx的相关系数为( ).
设随机事件A与B互不相容,0<0(A)<1,则下列结论中一定成立的是
对于随机变量X
1
,X
2
,…,X
3
,下列说法不正确的是( ).
设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于的次数,求Y2的数学期望。
设总体X~N(μ,σ2),从X中抽得样本X1,…,Xn,Xn+1,记
