问答题向半径为r的圆内随机抛一点,求此点到圆心的距离X的分布函数F(x),并求
问答题计算不定积分
问答题ααT=求αTα.
问答题设随机变量X在(0,3)内随机取值,而随机变量Y在(X,3)内随机取值,求协方差Cov(X,Y).
问答题设矩阵(1)已知A的一个特征值为3,试求y;(2)求矩阵P,使(AP)T(AP)为对角矩阵.
问答题(1)计算I1=∫0πxsin9xdx(2)比较下面3个值的大小,并给出论证:
问答题设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放入四个盒子,记X为至少有一只球的盒子的最小号码. (I)求X的分布律; (Ⅱ)若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{Y≤2}.
问答题设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数λ.
问答题汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油.假设各辆车加油所需时间是相互独立且都服从参数为λ的指数分布.(I)求第三辆车C在加油站等待加油时间T的概率密度;(Ⅱ)求第三辆车C在加油站度过时间S的概率密度.
问答题设向量组α1=[a11,a21,…an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(唯一零解).
问答题利用导数证明:当x>1时
问答题设函数f(x)在x=2的某邻域内可导,且f'(x)=e
f(x)
,f(2)=1,计算f
(n)
(2).
问答题求二元函数z=f(x,y)=x
2
y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
问答题设函数f(x)=(x>0),证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bxx+o(x2),并求常数A,B的值.
问答题设{Xn}是一随机变量序列,Xn的概率密度为:
问答题设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为(Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
问答题已知I(α)=求积分∫-32I(α)dα.
问答题设D是由曲线y=sin x+1与三条直线x=0,x=π,y=0所围成的曲边梯形,求D绕x轴旋转一周所围成的旋转体的体积.
问答题设f(x)在区间[一a,a](a>0)上具有二阶连续导数,且f(0)=0.
(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明:存在η∈[-a,a],使a
3
f"(η)=3∫
-a
a
f(x)dx.
问答题袋中有n张卡片,分别记有号码1,2,…,n,从中有放回地抽取k张,以X表示所得号码之和,求EX,DX.
