问答题设A是3阶实对称矩阵,A~B,其中B=(1)求A的特征值;(2)若ξ1=[1,1,0]T,ξ2=[2,2,0]T,ξ3=[0,2,1]T,ξ4=[5,-1,-3]T都是A的对应于λ1=λ2=0的特征向量,求A的对应于λ3的特征向量;(3)求矩阵A.
问答题设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
…η
s
分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
问答题设平面区域D={(x,y)|x2+y2≤8,y≥},求二重积分
问答题设α
1
,α
2
,…,α
n
是n个n维列向量,已知齐次线性方程组
α
1
x
1
+α
2
x
2
+…+α
n
x
n
=0
只有零解,问齐次线性方程组
(α
1
+α
2
)x
1
+(α
2
+α
3
)x
2
+…+(α
n-1
+α
n
)x
n-1
+(α
n
+α
1
)x
n
=0
是否有非零解?若没有,说明理由;若有,求出其通解.
问答题利用变换y=f(e
x
)求微分方程y"-(2e
x
+1)y’+e
2x
y=e
3x
的通解.
问答题设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:(1)在(a,b)内至少存在一点ξ,使得f'(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η).
问答题一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(ψ(2)=0.977).
问答题设(X,Y)的概率密度为判断X,Y是否独立,并说明理由.
问答题求内接于椭球面的长方体的最大体积.
问答题设xn(1一x)ndx,n=1,2,3,….证明级数收敛,并求其和.
问答题设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3一y,y≤1}上服从均匀分布,求边缘密度f
Y
(x)及在X=x条件下,关于Y的条件概率密度.
问答题求f(x,y)=x+xy—x
2
一y
2
在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
问答题λ为何值时,方程组无解,有唯一解,有无穷多解?并在有无穷多解时写出方程组的通解.
问答题求
问答题设(1)证明当n≥3时,有An=An-2+A2-E;(2)求A100.
问答题设试求α,β的值.
问答题设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程
问答题设A是n阶非零实矩阵,满足A*=A
T
.证明|A|>0.
问答题试证明:曲线恰有三个拐点,且位于同一条直线上.
问答题①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).③设A和B是两个列数相同的矩阵,表示A在上,B在下构造的矩阵.证明≤r(A)+r(B).
