问答题求微分方程y"+2y’+y=xe
x
的通解.
问答题已知α
1
,α
2
都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α
3
满足Aα
3
=α
2
+α
3
.记P=(α
1
,α
2
,α
3
),求P
-1
AP.
问答题设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
问答题设矩阵A=,E为2阶单位矩阵,2阶矩阵B满足BA=B+2E,求|B|.
问答题设有甲、乙两名射击运动员,甲命中目标的概率是0.6,乙命中目标的概率是0.5,求下列事件的概率:(1)从甲、乙中任选一人去射击,若目标被命中,则是甲命中的概率;(2)甲、乙两人各自独立射击,若目标被命中,则是甲命中的概率.
问答题求极限,ai>0且ai≠1,i=1,2,…,n,n≥2.
问答题设f(x)在x
0
处n阶可导,且f
(m)
(x
0
)=0(m=1,2,…,n一1),f
(n)
(x
0
)≠0(n>2).证明:当n为奇数时,(x
0
,f(x
0
))为拐点.
问答题试讨论函数g(x)=在点x=0处的连续性.
问答题已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
,如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组AX=β的通解.
问答题证明:当x>0时,有
问答题A=证明|xE—A|的4个根之和等于a11+a22+a33+a44.
问答题(1)设φ(x)在区间[0,1]上具有二阶连续的导数,且φ(0)=φ(1)=0.证明(2)设二元函数f(x,y)在区域D={(x,y)|0≤x≤1,0≤y≤1}上具有连续的4阶导数,且并设在D的边界上f(x,y)≡0.证明
问答题(1)设λ
1
,λ
2
,…,λ
n
是n阶矩阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A—λ
i
B)x=0的非零解,i=1,2,…,n.证明α
1
,α
2
,…,α
n
线性无关.
问答题计算二重积分其中D={(x,y)|0≤y≤x,x2+y2≤2x}.
问答题设函数y(x)(x≥0)二阶可导且y'(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x) 为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线y=y(x)的方程.
问答题某彩票每周开奖一次,每次提供十万分之一的中奖机会,且各周开奖是相互独立的.某彩民每周买一次彩票,坚持十年(每年52周),求他从未中奖的概率.
问答题计算(a>0是常数).
问答题已知数列{xn}的通项
问答题设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
问答题已知A是3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足Aα
1
=-α
1
-3α
2
-3α
3
,Aα
2
=4α
1
+4α
2
+α
3
),Aα
3
=-2α
1
+3α
3
。
(Ⅰ)求A的特征值;
(Ⅱ)求A的特征向量;
(Ⅲ)求A
*
-6E的秩。
