问答题设α
1
=(1,0,2,3)
T
,α
2
=(1,1,3,5)
T
,α
3
=(1,一1,a+2,1)
T
,α
4
=(1,2,4,a+8)
T
,β=(1,1,b+3,5)
T
.
问:(1)a,b为什么数时,β不能用α
1
,α
2
,α
3
,α
4
表示?
(2)a,b为什么数时,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一?
问答题已知随机变量X~N(0,1),求:(I)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数ψ(x)表示)
问答题已知f(x)的一个原函数为(1+sin x)ln x,求∫xf’(x)dx.
问答题设f(x)=,求∫f(x)dx.
问答题设X1,X2,…,Xn为总体X的一个样本,已知EX=μ,DX=σ2<+∞,求和E(S2).
问答题设f(x)在[-π,π]上连续,且有f(x)=+∫-ππf(x)sinxdx,求f(x).
问答题设非齐次线性方程组Ax=[α
1
,α
2
,α
3
,α
4
]x=α
5
有通解
k[-1,2,0,3]
T
+[2,一3,1,5]
T
.
(1)求方程组[α
2
,α
3
,α
4
]x=α
5
的通解;
(2)求方程组[α
1
,α
2
,α
3
,α
4
,α
4
+α
5
]x=α
5
的通解.
问答题将y=sinx展开为的幂级数.
问答题证明r(A+B)≤r(A)+r(B).
问答题设x1=1,xn+1=1+(n=1,2,…),求
问答题设总体X的概率密度为又设X1,X2,…,Xn是来自X的一个简单随机样本,求未知参数θ的矩估计量
问答题设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2)且,试求:(Ⅰ)二维随机变量(X,Y)的联合概率分布;(Ⅱ)X与Y的相关系数Pxy;(Ⅲ)条件概率P{Y=yj︱X=x1},j=1,2。
问答题设f(x)=试确定常数a,b,c,使f(x)在点x=0处连续且可导.
问答题设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,=max(X1,…,Xn).(I)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使=bX(n)的数学期望均为θ,并求
问答题设A是主对角元为0的4阶实对称矩阵,E是4阶单位矩阵,B=.且E+AB是不可逆的对称矩阵,求A.
问答题证明(一1)i-1b1…bi-1aici+1…cn.
问答题对于任意两个事件A1,A2,考虑随机变量试证明:随机变量X1和X2相互独立的充分必要条件是事件A1和A2相互独立.
问答题已知三元二次型x
T
Ax的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α。
(Ⅰ)求x
T
Ax的表达式;
(Ⅱ)求作正交变换x=Qy,把x
T
Ax化为标准二次型。
问答题设z=u(x,y)eax+y,.求常数a,使
问答题已知(2,1,1,1)
T
,(2,1,a,a)
T
,(3,2,1,a)
T
,(4,3,2,1)
T
线性相关,并且a≠1,求a.
