问答题设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论:(1)aij=AijATA=E且|A|=1(2)aij=-AijATA=E且|A|=-1.
问答题设a>0,x1>0,
问答题设z=z(x,y)是由9x
2
-54xy+90y
2
-6yz-z
2
+18=0确定的函数,求z=z(x,y)的极值点和极值。
问答题(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,
a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
问答题设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
问答题设A为3阶矩阵,α
1
,α
2
,α
3
是线性的无关3维列向量组,满足
Aα
1
=α
1
+2α
2
+2α
3
,Aα
2
=2α
1
+α
2
+2α
3
,Aα
3
=2α
1
+2α
2
+α
3
.
(1)求A的特征值.
(2)判断A是否相似于对角矩阵?
问答题已知总体X的数学期望EX=μ,方差DX=σ2,X1,X2,…,X2n是来自总体X容量为2n的简单随机样本,样本均值为.求EY.
问答题设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x
2
与直线y=x所围成的区域D
1
内的概率.
问答题已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X),试求:(I)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=的分布函数F(y).
问答题设函数f(y)的反函数f-1(x)及f'[f-1(x)]与f”[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
问答题设3阶实对称矩阵A的特征值为1,2,3,η
1
=(一1,一1,1)
T
和η
2
=(1,一2,一1)
T
分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
问答题设函数f(u)在(0,+∞)内具有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
问答题求连接两点A(0,1)与B(1,0)的一条可微曲线,它位于弦AB的上方,并且对于此弧上的任意一条弦AP,该曲线与弦AP之间的面积为x
4
,其中x为点P的横坐标.
问答题设α
1
=(1,一1,2,4),α
2
=(0,3,1,2),α
3
=(3,0,7,14),α
4
=(1,一2,2,0),α
5
=(2,1,5,10),它们的下列部分组中,是最大无关组的有哪几个?
(1)α
1
,α
2
,α
3
. (2)α
1
,α
2
,α
4
. (3)α
1
,α
2
,α
5
. (4)α
1
,α
3
,α
4
问答题设随机变量X的概率密度为求X的分布函数.
问答题向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C若α1,α2,…,αs线性无关.证明:r(β1,β2,…,βt)=r(C).
问答题设函数x=x(y)由方程x(y—x)2=y所确定,试求不定积分
问答题设X关于Y的条件概率密度为且Y的概率密度为
问答题求函数f(x,y)=x
2
+y
2
一12x+16y在区域D={(x,y)|x
2
+y
2
≤25}上的最大值和最小值.
问答题已知二次型
f(x
1
,x
2
,x
3
)=x
1
2
+4x
2
2
+4x
3
2
+2λx
1
x
2
—2x
1
x
3
+4x
2
x
3
.
当λ满足什么条件时f(x
1
,x
2
,x
3
)正定?
