问答题求行列式[*7]的第四行各元素的余子式的和.
问答题设α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,其中α
1
,α
2
,…,α
s
是齐次方程组AX=0的基础解系.证明Aβ
1
,Aβ
2
,…,Aβ
t
线性无关.
问答题假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求: (I)100个螺丝钉一袋的重量超过5.1千克的概率; (Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
问答题
问答题已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)
2
,EX=2(1—θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
问答题已知n阶矩阵A满足A
3
=E.
(1)证明A
2
一2A一3E可逆.
(2)证明A
2
+A+2E可逆.
问答题设f(x)=求f(x)的间断点,并说明间断点的类型.
问答题设。
问答题设二次型f(x1,x2,x3)=(x1,x2,x3),已知它的秩为1。(Ⅰ)求a和二次型f(x1,x2,x3)的矩阵。(Ⅱ)作正交变换将f(x1,x2,x3)化为标准二次型。
问答题G={(x,y)|x
2
+y
2
≤r
2
}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在区域G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
问答题设f(x)对一切x
1
,x
2
满足f(x
1
+x
2
)=f(x
1
)+f(x
2
),且f(x)在x=0处连续.证明:函数f(x)在任意点x
0
处连续.
问答题A是3阶矩阵,α是3维列向量,使得P=(α,Aα,A
2
α)可逆,并且A
3
α=3Aα一2A
2
α?
(1)求B,使得A=PBP
-1
.
(2)求|A+E|.
问答题设α=[a
1
,a
2
,…,a
n
]
T
≠0,A=αα
T
,求可逆矩阵P,使P
-1
AP=A.
问答题设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关于X的条件概率密度.
问答题设随机变量X的分布律为求X的分布函数F(x),并利用分布函数求P{2<X≤6},P{X<4},P{1≤X<5}.
问答题设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成F(x,y)=,求二元函数F(x,y)。
问答题
问答题设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
问答题A为三阶实对称矩阵,A的秩为2,且(1)求A的特征值与特征向量.(2)求矩阵A.
问答题设3阶矩阵A的各行元素之和都为2,又α
1
=(1,2,2)
T
和α
2
=(0,2,1)
T
分别是(A—E)X=0的(A+E)X=0的解.
(1)求A的特征值与特征向量.
(2)求矩阵A.
