问答题已知方程组(I)及方程组(Ⅱ)的通解为k1[一1,1,1,0]T+k2[2,一1,0,1]T+[一2,一3,0,0]T.求方程组(I),(Ⅱ)的公共解.
问答题设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x
0
∈(0,+∞),使f(x
0
)=0.
问答题设A=(1)证明当n>1时An=An-2+A2一E.(2)求An.
问答题设X,Y相互独立且同服从[0,θ](θ>0)上的均匀分布,求E[min(X,Y)],E[max(X,Y)]。
问答题假设男孩的出生率为51﹪,同性双胞胎是异性双胞胎的3倍,已知一双胞胎第一个是男孩,试求第二个也是男孩的概率。
问答题已知对于n阶方阵A,存在正整数k,使得A
k
=O.证明矩阵E—A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
问答题甲、乙两人相约于某地在12:00~13:00会面,设X,Y分别是甲、乙到达的时间,且假设X和Y相互独立,已知X,Y的概率密度分别为求先到达者需要等待的时间的数学期望.
问答题设y=求y(n)(n>1).
问答题平面区域D=((x,y)||x|+|y|≤1},计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2)(eλx一e-λy)dσ,常数λ>0.
问答题设函数f(x,y)可微,又f(0,0)=0,f
x
'(0,0)=a,f
y
'(0,0)=b,且φ(t)=f[t,f(t,t
2
)],求φ'(0).
问答题设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:存在ξ∈(0,3),使f'(ξ)=0.
问答题求微分方程xy’+y=xe
x
满足y(1)=1的特解.
问答题已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
问答题求函数f(x)=nx(1一x)n,n=1,2,…,在[0,1]上的最大值M(n)及
问答题
问答题设总体X的概率分布为X~,其中参数θ未知且。从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,-1,1,1,2,1。试求:(Ⅰ)θ的矩估计值;(Ⅱ)θ的最大似然估计值;(Ⅲ)经验分布函数F8(x)。
问答题设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f'(x),并讨论f'(x)在(一∞,+∞)内的连续性.
问答题设总体X的分布律为截尾几何分布
P{X=k}=θ
k-1
(1一θ),k=1,2,…,r,
P{X=r+1}=θ
r
,
从中抽得样本X
1
,X
2
,…,X
n
,其中有m个取值为r+1,求θ的最大似然估计.
问答题设3阶矩阵A=A-1XA=XA+2A,求X.
问答题A,B都是n阶矩阵,并且B和E+AB都可逆,证明:
B(E+AB)
-1
B
-1
=E—B(E+AB)
-1
A.
