问答题设生产函数和成本函数分别为当成本预算为S时,两种要素投入量x和y为多少时,产量Q最大,并求最大产量.
问答题已知=D≠0.求常数A,B,C,D的值.
问答题已知A是正定矩阵,证明|A+E|>1.
问答题设X
1
,X
2
,…,X
n
是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.试求总体X的数学期望E(X)的矩估计量和最大似然估计量.
问答题设an=∫0nπx|sinx|dx,n=1,2,3,…,试求的值.
问答题判别级数的敛散性.
问答题设α
1
=(1,一1,2,4),α
2
=(0,3,1,2),α
3
=(3,0,7,14),α
4
=(1,一2,2,0),α
5
=(2,1,5,10).
①求r(α
1
,α
2
,α
3
,α
4
,α
5
).
②求一个最大线性无关组,并且把其余向量用它线性表示.
问答题设二维随机变量(X,Y)的联合概率密度为,-∞<x,y<+∞,记Z=X2+Y2.求:(I)Z的密度函数;(Ⅱ)EZ,DZ;(Ⅲ)P{Z≤1}.
问答题求不定积分
问答题求A的特征值.判断a,b取什么值时A相似于对角矩阵?
问答题求级数
问答题某商品市场价格p=p(t)随时间变化,p(0)=p
0
.而需求函数Q
A
=b一ap(a,b>0),供给函数Q
B
=一d+cp(c,d>0),且p随时间变化率与超额需求Q
A
—Q
B
成正比.求价格函数p=p(t).
问答题求∫xsin
2
xdx.
问答题设三元非齐次线性方程组AX=b的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,一1,1]
T
,η
3
+η
1
=[0,2,0]
T
,求该非齐次方程的通解.
问答题设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且
β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.
讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
问答题设α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=0,A=E+αβ
T
,试计算:
(1)|A|;(2)A
n
;(3)A
-1
.
问答题从装有1个白球,2个黑球的罐子里有放回地取球,记这样连续取5次得样本X1,X2,X3,X4,X5.记Y=X1+X2+…+X5,求:(1),E(S2)(其中,S2分别为样本X1,X2,…,X5的均值与方差);(2)Y的分布律,EY,E(Y2).
问答题设顾客在某银行窗口等待服务的时间X(单位:分钟)服从参数为的指数分布.若等待时间超过10分钟,他就离开.设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求Y的分布律及P{Y≥1).
问答题设二维随机变量(X,Y)的联合概率密度令Z=max{X,Y},求:(1)Z的分布函数;(2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
问答题设f(x)=∫0xg(t)dt.(1)证明y=f(x)为奇函数,并求曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及y轴所围成图形的面积.
