设a0=1,a1=0,an+1=(nan+an-1)(n=1,2,3…),S(x)为幂级数anxn的和函数.
已知r(α
1
,α
2
,α
3
)=2,r(α
2
,α
3
,α
4
)=3,证明:
(Ⅰ)α
1
能由α
2
,α
3
线性表示;
(Ⅱ)α
4
不能由α
1
,α
2
,α
3
线性表示。
设f(x)=x
3
+ax
2
+bx在x=1处有极小值一2,则( ).
计算二重积分x2+4x+y2)dxdy,其中D是曲线(x2+y2)=a2(x2-y2)围成的区域.
的渐近线的条数为().
设数列{an}满足a1=a2=1,且an+1=an+an-1,n=2,3,….证明:在|x|<时幂级数收敛,并求其和函数与系数an.
B解答题解答应写出文字说明、证明过程或演算步骤。/B
下列反常积分中,收敛的是()
B解答题解答应写出文字说明、证明过程或演算步骤。/B
计算I=.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若r(A)=r(B),则AX=0与BX=0同解以上命题正确的是( ).
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解;(I)求A的特征值与特征向量;(II)求正交矩阵Q和对角矩阵A,使得QTAQ=L;
B解答题解答应写出文字说明、证明过程或演算步骤。/B