设A是3×4阶矩阵且r(A)=l,设(1,一2,1,2)
T
,(1,0,5,2)
T
,(一1,2,0,1)
T
,(2,一4,3,a+1)
T
皆为AX=0的解.
设有微分方程y'一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
下列结论正确的是()
下列结论中正确的是
设矩阵A
m×n
正定,证明:存在正定阵B,使A=B
2
。
计算二重积分(x+y)dσ,其中积分区域D是由直线x=0,x=2,y=2与曲线y=所围成.
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆P,使得P
-1
AP=A.
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系。证明:
(Ⅰ)η
*
,ξ
1
,…,ξ
n—r
线性无关;
(Ⅱ)η
*
,η
*
+ξ
1
,…,η
*
+ ξ
n—r
线性无关。
设D是平面有界闭区域,f(x,y)在D上连续,证明:若f(x,y)在D上非负,且
设二次型f=x
1
2
+x
2
2
+x
3
2
—4x
1
x
2
—4x
1
x
3
+2ax
2
x
3
经正交变换化为3y
1
2
+3y
2
2
+ by
3
2
,求a,b的值及所用正交变换。
设f(x)在x=a的某邻域内有定义,则f(x)在x=a处可导的一个充要条件是:
已知ξ=的一个特征向量.
设f(x)在[0,+∞)内可导且f(0)=1,f'(x)<f(x)(x>0).证明:f(x)<e
x
(x>0).