研究生类
公务员类
工程类
语言类
金融会计类
计算机类
医学类
研究生类
专业技术资格
职业技能资格
学历类
党建思政类
公共课
公共课
专业课
全国联考
同等学历申硕考试
博士研究生考试
数学三
政治
数学一
数学二
数学三
英语一
英语二
俄语
日语
袋中有1个红球,2个黑球和3个白球,现有放回地从袋中取两次,每次取一球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
进入题库练习
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度。
进入题库练习
B选择题下列每题给出的四个选项中,只有一个选项符合题目要求。/B
进入题库练习
设X~f(x)=对X进行独立重复观察4次,用Y表示观察值大于的次数,求E(Y2).
进入题库练习
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.
进入题库练习
设随机事件A与B互不相容,0<P(A)<1,则下列结论中一定成立的是
进入题库练习
设总体X的密度函数为f(x)=(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量;(2)求D().
进入题库练习
向直线上掷一随机点,假设随机点落入区间(-∞,0],(0,1]和(1,+∞)的概率分别为0.2,0.5和0.3,并且随机点在区间(0,1]上分布均匀.设随机点落入(-∞,0]得0分,落入(1,+∞)得1分,而落入(0,1]坐标为x的点得x分.试求得分X的分布函数F(x).
进入题库练习
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为C和2C元.如果制造的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问C取何值时,用第2种方法较好?
进入题库练习
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Zn=;近似服从正态分布,并指出其分布参数.
进入题库练习
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.设随机变量U=max{X,Y),V=min(X,Y}.(1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;(3)判断U,V是否相互独立?(4)求P(U=V).
进入题库练习
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
进入题库练习
函数F(χ,y)=是否是某个二维随机变量(X,Y)的分布函数?
进入题库练习
一个罐子里装有黑球和白球,黑、自球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计
进入题库练习
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P|ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。(Ⅰ)写出二维随机变量(X,Y)的分布律;(Ⅱ)求E(X)。
进入题库练习
已知随机变量X的概率分布为且P{X≥2}=,求未知参数θ及X的分布函数F(x).
进入题库练习
现有奖券100万张,其中一等奖1张,奖金5万元;二等奖4张,每张奖金2500元;三等奖40张,每张奖金250元;四等奖400张,每张奖金25元,而每张奖券2元,试计算买一张奖券的平均收益。
进入题库练习
10件产品中4件为次品,6件为正品,现抽取2件产品.
进入题库练习
设随机变量X1,X2,…,Xn相互独立同分布,其密度函数为偶函数,且DXi=1,i=1,…,n,则对任意ε>0,根据切比雪夫不等式直接可得
进入题库练习
设二维随机变量(X,Y)的联合密度为发f(x,y)=(1)求c;(2)求X,Y的边缘密度,问X,Y是否独立?(3)求Z=max(X,Y)的密度.
进入题库练习