设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fZ(z)=()
设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)联合分布率及关于X和关于Y的边缘分布率中的部分数值,试将其余数值填入表中的空白处。
设X
1
,X
2
,X
3
是随机变量,且X
1
~N(0,1),X
2
~N(0,2
2
),X
3
~N(5,3
2
),p
i
=P{-2≤X
i
≤2)(i=1,2,3),则( )
已知随机变量(X,Y)在区域D={(x,y)|一1<x<1,一1<y<1}上服从均匀分布,则
设一设备在任何长为T的时间内发生故障的次数N(t)服从参数为λt的泊松分布,求:
从正态总体X~N(0,σ2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ2的无偏估计量的是().
设总体X~N(0,1),(X1,X2,…,Xm,Xm+1,…,Xm+n)为来自总体X的简单随机样本,求统计量所服从的分布.
设X~N(μ,σ
2
),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设随机变量X满足|X|≤1,且P(x=-1)=1/8,P(X-1)=1/4,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.
设X1,X2,…,Xm,Y1,Y2,…,Yn独立.Xi~N(a,σ2),i=1,2,…,m,Yi~N(b,σX1,X2,…,Xn),i=1,2,…,n,,而α,β为常数.试求的分布.
设(X,Y)的概率密度为求的数学期望.
袋中有1个红球,2个黑球和3个白球,现有放回地从袋中取两次,每次取一球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{x=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
设有一批同型号产品,其次品率记为p.现有五位检验员分别从中随机抽取n件产品,检测后的次品数分别为1,2,2,3,2.(Ⅰ)若已知p=2.5%,求n的矩估计值(Ⅱ)若已知n=100,求p的极大似然估计值(Ⅲ)在情况(Ⅱ)下,检验员从该批产品中再随机检测100个产品,试用中心极限定理近似计算其次品数大于3的概率(注:Ф(5/7)=0.76).
某生产线生产白糖,设白糖重量X~N(μ,15
2
),现从生产线上任取10袋,s=30.23,在显著性水平α=0.05下,问机器生产是否正常?
设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程。[附表]:t分布表,P{t(n)≤tp(n)}=p
在一个围棋擂台赛中,甲、乙两位选手轮流对擂主丙进行攻擂,每人一局甲先开始,直到将擂主丙攻下为止,规定只要丙输一局则为守擂失败,如果甲、乙对丙的胜率分别为p
1
与p
2
(0<p
1
,p
2
<1).求:
(Ⅰ)甲攻擂次数X
1
的概率分布;
(Ⅱ)乙攻擂次数X
2
的概率分布;
(Ⅲ)擂主丙对甲、乙二人守擂总次数X
3
的概率分布.
(Ⅳ)假设乙对丙的胜率p
2
是1/4,若使甲、乙二人攻擂成功概率相等,求甲对丙的胜率.
设总体X~N(0,σ2),X1,X2,…,Xn为来自总体X的简单随机样本,=,求所服从的分布.
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是( ).
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下侧分位数).
设随机变量X的概率分布为P{X=1)=P(X=2)=1/2,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2)。