假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
设1000件产品中有150件次品,从中一次抽取3件,求:最多取到1件次品的概率.
设随机变量X~F(n,n),记p
1
=P{X≥1),p
2
=P{X≤1},则 ( )
设总体X服从正态分布N(0,σ2),X1,X2,…,X10是取自总体X的简单随机样本,统计量(1<i<10)服从F分布,则i等于()
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
甲、乙、丙三人向一架飞机进行射击,他们的命中率分别为0.4,0.5,0.7.设飞机中一弹而被击落的概率为0.2,中两弹而被击落的概率为0.6,中三弹必然被击落,今三人各射击一次,求飞机被击落的概率.
已知(X,Y)的概率分布为(Ⅰ)求Z=X—Y的概率分布;(Ⅱ)记U1=XY,V1=,求(U1,V1)的概率分布;(Ⅲ)记U2=max(X,Y),V2=min(X,Y),求(U2,V2)的概率分布及U2V2的概率分布.
设随机变量(X,Y)在区域D={(χ,y):0≤χ≤1,0≤y≤1}上服从均匀分布,随机变量U=(Y-X)
2
.求U的期望与方差.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
在全概率公式P(B)=(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,还可以将其他条件改为()
已知随机变量X1与X2的概率分布,而且P{X1X2=0}-1.
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于÷1/4概率p.
设X1,…,Xn是取自总体X的一个简单随机样本,X的概率密度为(Ⅰ)求未知参数θ的矩估计量;(Ⅱ)求未知参数θ的最大似然估计量.
设随机变量X,Y相互独立,且X~N(0,1/2),Y~N(1,1/2),则与Z=Y-X同分布的随机变量是( ).
对任意两个事件A和B,若P(AB)=0,则( ).
(Ⅰ)设随机变量X服从指数分布e(λ),证明:对任意非负实数s及t,有P(X≥s+t|x≥s)=P(X≥t).这个性质叫做指数分布的无记忆性.(Ⅱ)设电视机的使用年数X服从指数分布e(0.1),某人买了一台旧电视机,求还能使用5年以上的概率.
设随机变量X,Y独立同分布,且X~N(0,σ
2
),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:
(1)E(U),E(V),D(U),D(V),ρ
UV
;
(2)设U,V不相关,求常数a,b之间的关系.
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)计算两个边缘概率密度;(Ⅱ)求条件概率密度fY|X(y|x=2);(Ⅲ)求条件概率P{Y≤1|X≤1}。
B选择题下列每题给出的四个选项中,只有一个选项符合题目要求。/B
设X~N(0,1),给定X=x条件下时Y~N(ρx,1-ρ
2
)(0<ρ<1),求(X,Y)的密度以及给定Y=y条件下X的分布.