期刊文献+

基于马尔科夫随机场的三维激光雷达道路场景分割

Markov Random Field Based on Road Scene Segmentation of 3D Lidar
原文传递
导出
摘要 针对弯道和坡道下三维激光雷达地面高准确性提取问题,提出一种基于马尔科夫随机场的道路场景分割算法。利用激光雷达原始数据的数据结构信息,先建立扇形栅格图,利用最小栅格的四邻域栅格的高度和到四个栅格的距离计算最小栅格的梯度值;建立以最小栅格为节点的马尔科夫随机场。通过最大流/最小割算法求解马尔科夫无向图模型,对所有栅格进行分类,标记为路面点和非路面点。算法分别在校园路况和城市公路路况下进行了试验,并且与高度阈值算法进行对比,结果表明:在弯道和坡道相较于高度阈值算法有较好的鲁棒性。 An algorithm with Markov Random Field-based road scene segmentation is presented to play a road scene with curves and slopes from 3 D Lidar data with high quality.Based on the structure data information of the original Lidar data,a fan-shaped grid map is established.The gradient of the smallest grid is calculated by utilizing the corresponding height and distance with their four neighborhoods;Markov Random Field in node with the minimum grid has been built.Solving undirected graphical model in maximal flow/minimal cut,all grids has been categorized as marked road and non-road points.Experiments are taken under both campus conditions and city conditions.The results demonstrate that the proposed algorithm has better robustness than the height threshold algorithm in the road scene with curves and slopes.
作者 邹斌 冯昊文 刘康 ZOU Bin;FENG Haowen;LIU Kang(Hubei Province Key Laboratory of Modern Automotive Technology,Wuhan University of Technology,Wuhan 430070,China;Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan University of Technology,Wuhan 430070,China)
出处 《数字制造科学》 2020年第1期118-123,共6页
基金 湖北省科技厅资助项目(2016BEC116,2017BEC196)
关键词 马尔科夫随机场 三维激光雷达 点云 道路场景分割 Markov random field 3D LIDAR point cloud ground segmentation
  • 相关文献

参考文献2

二级参考文献14

  • 1章毓晋.图像工程[M].北京:清华大学出版社,1999..
  • 2GLENNIE C. Calibration and kinematic analysis of the Vel-odyne HDL-64E S2 Lidar sensor[J]. Photogrammetric En-gineerii^ and Remote Sensii^* 2012, 78(4) * 339 - 347.
  • 3HASELICH M, BING R,PAULUS D. Calibration ofmultiple cameras to a 3D laser range finder [C]// Inter-national Conference on Emerging Signal Processing Appli-cations (ESPA). Las Vegas:IEEE,2012 : 25 - 28.
  • 4KAMMEL S, PITZER B. Lidai^based lane markerdetection and mapping[C] // Intelligent Vehicles Sympo-sium. Eindhoven: IEEE, 2008 : 1137 - 1142.
  • 5HIMMELSBACH M, HUNDELSHAUSEN F,WUEN-SCHE H. Fast segmentation of 3D point clouds for groundvehicles [C] // Intelligent Vehicles Symposium (IV). San Die-go: IEEE, 2010: 560 - 565.
  • 6GUO C,SATO W,HAN L,et al. Graph-based 2Droad representation of 3D point clouds for intelligentvehicles[C] // Intelligent Vehicles Symposium(IV). De-troit: IEEE,2011: 715-721.
  • 7MONTEMERLO M, BECHER J, BHAT S,et al. Jun-ior: The Stanford entry in the urban challenge [J], Jour-nal of Field Robotics, 2008,25(9): 569 - 597.
  • 8MOOSMANN F,PINK 0,STILLER C. Segmentationof 3D lidar data in non-flat urban environments using alocal convexity criterion [Cj // Intelligent Vehicles Sym-posium. Xi,an: IEEE, 2009 : 215 - 220.
  • 9DOUILLARD B,UNDERWOOD J, KUNTZ N, et al.On the segmentation of 3D LIDAR point clouds[C]//Internationa里 Conference on Robotics and Automation(ICRA). Shanghai: IEEE,2011: 2798 - 2805.
  • 10DEBLED RENNESSON I,FESCHET F,ROUYER-DEGLI J. Optimal blurred segments decomposition inlinear time [C] // Discrete Geometry for Computer Im-agery. Berlin Heidelberg : Springer, 2005 : 371 - 382.

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部