期刊文献+

数学柏拉图主义的认识论问题 被引量:1

The Epistemological Problem of Mathematical Platonism
原文传递
导出
摘要 认识论问题是数学柏拉图主义面临的主要难题。回应它的进路有两种:一是为人类认知主体与抽象对象之间寻找某种联系,如哥德尔的数学直觉学说;二是为数学提供一种免接触的认识论,如新弗雷格主义、全面柏拉图主义等。但从自然主义的观点看,这两种进路都隐含深刻的困难,因为自然主义下的认识论问题不是单纯的证成问题,它更主要地是认知机制问题。特别地,它要求回答相关性问题,即说明人类大脑中的数学概念如何能与抽象对象相关联,而不只是大脑的想象。 The epistemological problem is the main problem faced by mathematical Platonism.There are roughly two ways for a Platonist to approach the problem:one is to find some connections between the human cognitive subject and abstract objects,such as G9 del’s theory of mathematical intuition;the other is to provide a no-contact epistemology for mathematics,such as neo-Fregeanism and full-blooded Platonism.However,from a naturalistic point of view,both of the two approaches have serious difficulties,because the epistemological problem is not purely about justification,but also about cognitive mechanism.In particular,it requires an answer to the aboutness problem,i.e.,explaining that how a mathematical concept in the brain can be about some abstract objects rather than a mere imagination of the brain.
作者 高坤 GAO Kun(Research Center for Philosophy of Science and Technology,Shanxi University,Taiyuan 030006,China)
出处 《自然辩证法研究》 CSSCI 北大核心 2021年第8期109-114,共6页 Studies in Dialectics of Nature
关键词 数学柏拉图主义 认识论问题 免接触认识论 相关性 mathematical Platonism the epistemological problem no-contact epistemology aboutness
  • 相关文献

参考文献2

二级参考文献40

  • 1Azzouni, J. , 1998, "On ' on what there iS' ", Pacific Philosophical Quarterly 79 : 1 - 18.
  • 2Baker, A. , 2001, "Mathematics, indispensability and scientific progress", Erkenntnis 55 : 85 - 116.
  • 3Baker, A. ,2005, "Are there genuine mathematical explanations of physical phenomena?", Mind 114:223 -238.
  • 4Benacerraf, P. , 1973, "Mathematical truth", Journal of Philosophy 70:661 -679.
  • 5Burgess, J. P. , 2004, "Mathematics and bleak house", Philosophia Mathematica (3) no. 12:18 -36.
  • 6Burgess, J.P. and Rosen,G. , 1997, A Subject with No Object, Oxford: Clarendon Press.
  • 7Chihara, C., 1990, Constructibility and Mathematical Existence, Oxford : Clarendon Press.
  • 8Colyvan, M. , 1999, "Confirmation theory and indispensability", Philosophical Studies 96:1 -19.
  • 9Colyvan, M. ,2002, "Mathematics and aesthetic considerations in science", Mind 111 : 69 -74.
  • 10Colyvan, M. ,2004, "Indispensability arguments in the philosophy of mathematics", in Stanford Encyclopedia of Philosophy. E. N. Zalta ( ed. ),http://plato.stanford.edu/entries/mathphil-indis/.

共引文献16

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部