期刊文献+

基于深度可分离卷积网络的皮肤镜图像病灶分割方法 被引量:5

Dermoscopic image lesion segmentation method based on deep separable convolutional network
原文传递
导出
摘要 针对皮肤镜图像病灶难定位、病灶精准分割难以实现的问题,提出一种基于深度可分离卷积网络的皮肤镜图像病灶分割方法。首先对皮肤镜图像进行黑框移除和毛发移除处理,将图像中有碍确定病灶位置的人工噪声、天然噪声移除;然后在降噪处理的基础上,对图像进行形变、旋转,以扩充数据集;最后构建基于深度可分离卷积、空洞卷积的编解码分割模型,编码部分对图像进行特征提取,解码部分融合特征图,并对图像细节特征进行恢复。实验结果表明,该方法针对皮肤镜图像病灶分割问题可取得较好的分割效果,分割病灶的准确率达到95.24%,与分割模型U-Net相比,准确度提高了6.17%。 Aiming at the problem of the difficulty in locating the lesions in dermoscopic images and achieving precise segmentation of the lesions,a method of lesion segmentation in dermatological images based on deep separable convolutional network was proposed.Firstly,perform the black frame removal and hair removal processing on the dermoscopic image to remove the artificial and natural noise that hinders the location of the lesion in the image.Then the image after the noise reduction process was deformed and rotated to expand the data set.Finally,a encoder-decoder segmentation model based on depth separable convolution and hole convolution was constructed.The coding part extracts the features of the image,and the decoding part fuses the feature maps and restores the image details.Experimental results show that this method can achieve better segmentation results for the problem of skin disease image lesion segmentation.The accuracy of segmenting lesions reaches 95.24%.Compared with the segmentation model U-Net,the accuracy is improved by 6.17%.
作者 崔文成 张鹏霞 邵虹 CUI Wencheng;ZHANG Pengxia;SHAO Hong(School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《智能科学与技术学报》 2020年第4期385-393,共9页 Chinese Journal of Intelligent Science and Technology
关键词 皮肤镜图像 病灶分割 空洞卷积 深度可分离卷积 编解码模型 dermoscopic image lesion segmentation hole convolution deep separable convolution encoder-decoder model
  • 相关文献

参考文献3

二级参考文献2

共引文献21

同被引文献18

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部