期刊文献+

Mm(c)×R中具有平行平均曲率的2-调和子流形 被引量:1

Biharmonic submanifolds with mean parallel curvature on M^m(c)×R
下载PDF
导出
摘要 令M^n为n维子流形,其乘积的平均曲率H为M^m(c)×R,其中,M^m(c)具是截面曲率c为常数的空间型.通过利用Simons不等式,得到了一系列结果. Let M^n be an n-dimensional submanifold with parallel mean curvature H of product space form M^m(c)×R,where M^m(c)is a space form with constant sectional curvature c.By using the method of Simons inequality,a series of results are obtained.
作者 米蓉 MI Rong(College of Mathematics and Statistics,Northwest Normal University Lanzhou 730070,China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2020年第3期312-316,共5页 JUSTC
关键词 2-调和子流形 具有平行平均曲率 乘积空间型 biharmonic submanifold with parallel mean curvature product space form
  • 相关文献

参考文献1

二级参考文献19

  • 1Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86, 109-160 (1964).
  • 2Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps, CBMS 50, American Mathematical Society, Providence, RI, 1983.
  • 3Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 389-402 (1986).
  • 4Jiang, G. Y.: 2-harmonic isometric immersions between Riemannian manifolds. Chinese Ann. Math. Set. A, 7, 130-144 (1986).
  • 5Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Israel J. Math., 130, 109-123 (2002).
  • 6Balmus, A., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in space forms. In: Symposium on the Differential Geometry of Submanifolds, Valenciennes, July, 2007, 25-32.
  • 7Zhang, W.: New examples of biharmonic submanifolds in CP^n and S^2n+1. Annals of the Alexandru loan Cuza University - Mathematics, LVII, 207-218 (2011).
  • 8Chern, S. S., Goldberg, S. I.: On the volume decreasing property of a class of real harmonic mappings. Amer. J. Math., 97, 133-147 (1975).
  • 9Chern, S. S.: Minimal Submanifolds in a Riemannian Manifold, Mimeographed Lecture Notes, Univ. of Kansas, 1968.
  • 10Li, H. Z.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann., 305, 665-672 (1996).

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部