摘要
令M^n为n维子流形,其乘积的平均曲率H为M^m(c)×R,其中,M^m(c)具是截面曲率c为常数的空间型.通过利用Simons不等式,得到了一系列结果.
Let M^n be an n-dimensional submanifold with parallel mean curvature H of product space form M^m(c)×R,where M^m(c)is a space form with constant sectional curvature c.By using the method of Simons inequality,a series of results are obtained.
作者
米蓉
MI Rong(College of Mathematics and Statistics,Northwest Normal University Lanzhou 730070,China)