期刊文献+

煤矿风险隐患评估系统

Study on coal mine risk hidden danger evaluation system
原文传递
导出
摘要 为解决当前煤矿风险隐患处置不及时、各类风险隐患之间的关联关系不强以及煤矿风险隐患与事故风险之间可量化性不强等问题。首先,通过采集煤矿“三位一体”系统数据,进行语义识别,建立煤矿灾害事故链以及风险评价模型,量化分析煤矿风险;然后,建立包含煤矿综合风险动态评估、煤矿各专业风险动态评估、隐患时间分布、隐患地点分布、煤矿自查风险评估契合度比对分析、重复隐患数据分析、隐患重要度分析以及隐患年份与关键词分析等功能的煤矿风险评价系统。结果表明,通过煤矿风险隐患进行语义识别,可实现对煤矿各类灾害风险的量化表达、可视化展示和风险超前预警,为煤矿降低事故风险、及时隐患闭环处置,提供技术支撑。 The untimely disposal of the hidden danger,the weak correlation among the various hidden dangers,and the insufficient quantification between the hidden danger and the accident risk in coal mines are major problems to be solved.First,by collecting the data of the″trinity″system of coal mines,semantic recognition was performed,and the disaster accident chain in coal mines and the risk evaluation model were established to quantify and analyze the risk in coal mines.Then,a risk evaluation system for coal mines was built,including comprehensive risk dynamic evaluation,professional risk dynamic evaluation,hidden danger time distribution,hidden danger location distribution,self-checking risk evaluation coincidence analysis,repeated hidden danger data analysis,hidden danger importance analysis,and hidden danger year and keyword analysis of coal mines.The results show that the quantitative expression,visual display,and pre-warning of all kinds of disasters and risks in coal mines can be realized by the semantic recognition of hidden risks in coal mines,providing technical support for reducing the accident risk and ensuring timely closed-loop disposal of hidden dangers.
作者 李林 张津鹏 付恩三 刘光伟 LI Lin;ZHANG Jinpeng;FU Ensan;LIU Guangwei(Guoneng Baori Hiller Energy Co.,Ltd.,Hulunbuir Inner Mongolia 021000,China;School of Mining Technology,Liaoning Technical University,Fuxin Liaoning 123000,China;Information Institute,Ministry of Emergency Management of the PRC,Beijing 100029,China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2023年第S02期1-6,共6页 China Safety Science Journal
基金 国家自然科学基金资助(51974144) 辽宁工程技术大学学科创新团队资助项目(LNTU20TD-07)
关键词 风险隐患 “三位一体” 语义识别 事故链 煤矿灾害 risk hidden danger ″trinity″ semantic recognition accident chain coal mines disaster
  • 相关文献

参考文献13

二级参考文献163

  • 1郜博锋.铁路安全监管工作分析和对策研究[J].中国安全科学学报,2020(S01):48-53. 被引量:5
  • 2张智雄,刘欢,丁良萍,吴朋民,于改红.不同深度学习模型的科技论文摘要语步识别效果对比研究[J].数据分析与知识发现,2019,3(12):1-9. 被引量:23
  • 3谌志群,张国煊.文本挖掘与中文文本挖掘模型研究[J].情报科学,2007,25(7):1046-1051. 被引量:51
  • 4[5]Rayne M,Carter D.Combining knowledge sources to reorder n-best speech hypothesis lists[C]//Proceedings of ARPA Human Language Technology Workshop.[S.l.]:ARPA,1994:212-217.
  • 5[6]Chotimongkol A.Improving speech recognizer performance in a dialog system using n-best hypotheses reranking[D].Pittsburgh:Carnegie Mellon University,2002.
  • 6Brill E, et al. An analysis of the AskMSR question-answering system[ A]. Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[ C]. USA: Association computational linguistics,2002.257- 264.
  • 7Dragomir R, et al. Mining the Web for answers to natural language questions[A] .Proceedings of International Conference on Information and Knowledge Management [C]. New York: Association for Computing Machinery,2001. 143 - 150.
  • 8Li X, Roth D. Learning question classifiers: The role of semantic information [ J ]. Natural Language Engineering, 2006,12(3):229-249.
  • 9Pomerantz J. A linguistic analysis of question taxonomies[J]. Journal of the American Society for Information Science and Technology, 2005,56 (7) : 715 - 728.
  • 10Bernstein A, et al. Talking to the Semantic Web--a controlled English query interface for ontologies[J]. Ais Sigsemis Bulletin, 2005,2( 1 ) :42 - 47.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部