期刊文献+

基于YOLO的视频行人检测研究 被引量:1

Research on Video Pedestrian Detection Based on YOLO
下载PDF
导出
摘要 针对视频中行人检测准确率低的问题,提出一种基于YOLO的视频行人检测研究方法。首先引入YOLOv5检测器,在YOLOv5的Neck部分融合注意力模块CBAM,加强对低层特征的提取,解决视频中行人运动模糊问题,提高行人检测精度;其次引入DeepSort算法,在视频行人数据集上进行训练,实现行人跟踪;最后在DeepSort算法实现行人跟踪后引入REID技术,有效纠正行人运动轨迹,解决行人位置信息出错问题。实验结果表明:所提方法较原始算法mAP@0.5提高了2.8%,mAP@0.5:0.95提高了5.4%。 Aiming at the low accuracy of pedestrian detection in video,a research method of video pedestrian detection based on YOLO was proposed.Firstly,YOLOv5 detector is introduced,and attention module CBAM is integrated into THE Neck part of YOLOv5 to enhance the extraction of low-level features,solve the problem of blurred pedestrian movement in the video,and improve pedestrian detection accuracy.Secondly,DeepSort algorithm is introduced to train on video pedestrian data set to realize pedestrian tracking.Finally,REID technology is introduced after DeepSort algorithm realizes pedestrian tracking to effectively correct pedestrian movement trajectory and solve the error problem of pedestrian location information.The experimental results show that the proposed method improves by 2.8%and 5.4%compared with the original method mAP@0.5 and mAP@0.5:0.95.
作者 张梦华 陆奎 高正康 ZHANG Menghua;LU Kui;GAO Zhengkang(College of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处 《忻州师范学院学报》 2022年第5期27-30,共4页 Journal of Xinzhou Teachers University
关键词 YOLOv5 DeepSort REID 行人检测 YOLOv5 DeepSort REID pedestrian detection
  • 相关文献

参考文献5

二级参考文献42

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3Dollar P, Wojek C, Schiele B, et aI.Pedestrian detection : an evaluation of the state of the an [J].IEEE Transactions on Pattern Antdysis and Machine Intelligence,2012,34 (4) :743-761.
  • 4Sun H,Wang C,Wang B,et al.Pyramid binary pattern Leatures lbr real-time pedestrian detection from infrared videos [ J ] .Neurocomputing, 2011,74 ( 5 ) : 797-804.
  • 5Yah J, Zhang X, Lei Z, et al.Robust multi-resolution pede- strian detection in traffic scenes [C]//Proceedings of the IEEE Computer Society Conlbrence on Computer Vision and Pattern Recognition.Portland: IEEE, 2013 : 3033-3040.
  • 6Ge J,Luo Y,Tei G.Real-timc pedestrian detection and tracking at nighttime for driver-assistance systems [J]. IEEE Transactions on Intelligent Transportation Systems, 2009.10(2):283-298.
  • 7Bertozzi M, Broggi A, Felisa M,et aLLow-level pedestrian detection by means of visible and far infra-red tetra-vision [C]//Proceedings of Intelligent Vehicles Symposium. Tokyo : IEEE, 2006 : 231-236.
  • 8Liu Q ,Zhuang J J, Ma J.Robt, st and fast pedestrian detec- tion method for far-infiared automotive driving assistance systems [ J ].Infrared Physics and Technology, 2013,60 : 288-299.
  • 9Zin T T,Tin P, Hama H.Bundling multislit-HOG features of near infrared images tbr pedestrian detection [C]// Proceedings of the 4th International Conference on Inno- vative Computing,Information and Control.Kaohsiung: IEEE, 2009 : 302-305.
  • 10Dalai N,Triggs B.Histograms of oriented gradients for human detection [C]//Proceedings of 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition.San Diego : IEEE, 2005 : 886-893.

共引文献94

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部